Arm® Versatile™ Express Juno Development Platform (V2M-Juno)

Technical Reference Manual

Copyright © 2014–2018 Arm Limited or its affiliates. All rights reserved.

Release Information

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Confidentiality</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDI0524A</td>
<td>24 June 2014</td>
<td>Non-Confidential</td>
<td>First issue of TRM</td>
</tr>
<tr>
<td>DDI0524B</td>
<td>1 October 2014</td>
<td>Non-Confidential</td>
<td>Second issue of TRM</td>
</tr>
<tr>
<td>DDI0524C</td>
<td>19 January 2015</td>
<td>Non-Confidential</td>
<td>Third issue of TRM</td>
</tr>
<tr>
<td>0000-03</td>
<td>7 April 2015</td>
<td>Non-Confidential</td>
<td>Fourth issue of TRM</td>
</tr>
<tr>
<td>0000-04</td>
<td>31 March 2016</td>
<td>Non-Confidential</td>
<td>Fifth issue of TRM</td>
</tr>
<tr>
<td>0000-05</td>
<td>15 July 2016</td>
<td>Non-Confidential</td>
<td>Sixth issue of TRM</td>
</tr>
<tr>
<td>0000-06</td>
<td>09 January 2017</td>
<td>Non-Confidential</td>
<td>Seventh issue of TRM</td>
</tr>
<tr>
<td>0000-07</td>
<td>20 April 2018</td>
<td>Non-Confidential</td>
<td>Eighth issue of TRM</td>
</tr>
</tbody>
</table>

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. **No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.**

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the

Copyright © 2014–2018 Arm Limited (or its affiliates). All rights reserved.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

Conformance Notices

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

CE Declaration of Conformity

The system should be powered down when not in use.

It is recommended that ESD precautions are taken when handling Versatile™ Express boards.

The motherboard generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. There is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:

• Ensure attached cables do not lie across the target board
• Reorient the receiving antenna
• Increase the distance between the equipment and the receiver
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
• Consult the dealer or an experienced radio/TV technician for help

Note

It is recommended that wherever possible shielded interface cables are used.
Contents

Preface

About this book 7
Feedback .. 10

Chapter 1 Introduction

1.1 Precautions .. 1-12
1.2 About the Versatile™ Express Juno Development Platform 1-13
1.3 Location of components on the V2M-Juno motherboard .. 1-15
1.4 Connectors on front and rear panels ... 1-17

Chapter 2 Hardware Description

2.1 Overview of V2M-Juno motherboard hardware .. 2-19
2.2 Juno Arm® Development Platform SoC .. 2-23
2.3 External power ... 2-26
2.4 Power management and temperature protection ... 2-27
2.5 Clocks ... 2-30
2.6 Resets ... 2-37
2.7 Thin Links ... 2-40
2.8 IOFPGA ... 2-43
2.9 HDLCD interface ... 2-46
2.10 Interrupts .. 2-48
2.11 USB 2.0 interface ... 2-51
This preface introduces the *Arm® Versatile™ Express Juno Development Platform (V2M-Juno) Technical Reference Manual*.

It contains the following:

About this book

This book describes the Versatile™ Express Juno Development Platform, the V2M-Juno motherboard. This development board contains the development chip, the Juno Arm® Development Platform SoC, version r0.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2, where:

rm Identifies the major revision of the product, for example, r1.
 pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

This book is for experienced hardware and software developers to aid software and tooling development using the Arm®v8 architecture in the Juno Arm Development Platform SoC.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an introduction to the Versatile™ Express Juno Development Platform.

Chapter 2 Hardware Description
This chapter describes the Versatile Express V2M-Juno motherboard hardware.

Chapter 3 Configuration
This chapter describes the powerup and configuration process of the Versatile Express V2M-Juno motherboard.

Chapter 4 Programmers Model
This chapter describes the programmers model of the Versatile Express V2M-Juno motherboard.

Appendix A Signal Descriptions
This appendix describes the signals present at the interface connectors of the Versatile Express V2M-Juno motherboard.

Appendix B Prototype V2M-Juno motherboard
This appendix describes the Versatile Express V2M-Juno motherboard that provides two SMC USB 2.0 ports.

Appendix C Specifications
This appendix contains the electrical specifications of the Versatile Express V2M-Juno motherboard.

Appendix D Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic Introduces special terminology, denotes cross-references, and citations.
bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS
Used in body text for a few terms that have specific technical meanings, that are defined in the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

![Figure 1 Key to timing diagram conventions](image)

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.
Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This book contains information that is specific to this product. See the following documents for other relevant information.

Arm publications

- Juno Arm® Development Platform SoC Technical Reference Manual (Revision r0p0) (Arm DDI 0515).
- Juno Arm® Development Platform SoC Technical Overview (Revision r0p0) (Arm DTO 0038).
- Application Note AN415 Example LogicTile Express 20MG design for a V2M-Juno Motherboard (Arm DAI 0415).
- Arm® CoreLink™ TLX-400 Network Interconnect Thin Links Supplement to Arm® CoreLink™ NIC-400 Network Interconnect Technical Reference Manual (Arm DSU 0028).
- Arm® PrimeCell PS2 Keyboard/Mouse Interface (PL050) (Arm DDI 0143).
- AMBA® 3 AHB-Lite Protocol Specification v1.0 (Arm IHI 0033).
- AMBA® 3 APB Protocol Specification v1.0 (Arm IHI 00024).
- Arm® DS-5 Setting up the Arm DSTREAM Hardware (Arm DUI 0481).
- Arm® DS-5 Using the Debug Hardware Configuration Utilities (Arm DUI 0498).

Other publications

- See the Linaro website http://www.linaro.org/downloads/ for Linaro software.
Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The number 100113_0000_07_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.
Chapter 1
Introduction

This chapter provides an introduction to the Versatile™ Express Juno Development Platform. It contains the following sections:

- 1.1 Precautions on page 1-12.
- 1.2 About the Versatile™ Express Juno Development Platform on page 1-13.
- 1.3 Location of components on the V2M-Juno motherboard on page 1-15.
- 1.4 Connectors on front and rear panels on page 1-17.
1.1 Precautions

You can take certain precautions to ensure safety and prevent damage to your V2M-Juno motherboard. This section contains the following subsections:

• **1.1.1 Ensuring safety on page 1-12.**
• **1.1.2 Preventing damage on page 1-12.**

1.1.1 Ensuring safety

Arm supplies an external power unit that converts mains power to 12V DC to power the board, enabling safe use of the board.

--- Warning ---

• Do not use the V2M-Juno motherboard near equipment that is sensitive to electromagnetic emissions, for example, medical equipment.
• Be careful of the sharp points on the plastic pillars on the left side when handling the case with the top removed.

1.1.2 Preventing damage

The Juno Development Platform is intended for use within a laboratory or engineering development environment. It is supplied with an enclosure that leaves the board sensitive to electrostatic discharges and permits electromagnetic emissions.

--- Caution ---

To avoid damage to the Juno Development Platform, observe the following precautions:

• To prevent damage, connect the external power supply to the board before powerup.
• Never subject the board to high electrostatic potentials. Observe Electrostatic Discharge (ESD) precautions when handling any board.
• Always wear a grounding strap when handling the board.
• Only hold the board by the edges.
• Avoid touching the component pins or any other metallic element.
• Do not use the board near a transmitter of electromagnetic emissions.
1.2 About the Versatile™ Express Juno Development Platform

The Juno Development Platform, V2M-Juno motherboard is a development motherboard that provides access to the Juno Arm Development Platform SoC. The Juno Arm Development Platform SoC supports software tooling, evaluation, and development using the Armv8 architecture.

The V2M-Juno motherboard provides the following:

Juno Arm Development Platform SoC (Juno SoC)

The Juno Arm Development Platform SoC provides a fully coherent dual-core Arm Cortex®-A57 cluster, a fully coherent quad-core Cortex-A53- cluster, and an I/O-coherent Arm Mali™-T624 quad-core GPU cluster.

Dual-core Cortex-A57 cluster:
- 2MB L2 cache.
- NEON™ and FPU.
- Underdrive: Maximum operating frequency: 450MHz.
- Nominal drive: Maximum operating frequency: 800MHz.
- Overdrive: Maximum operating frequency: 1.1GHz.

Quad-core Cortex-A53 cluster:
- 1MB L2 cache.
- NEON and FPU.
- Underdrive: Maximum operating frequency: 450MHz.
- Nominal drive: Maximum operating frequency: 700MHz.
- Overdrive: Maximum operating frequency: 850MHz.

Quad-core Mali-T624 cluster:
- Underdrive: Maximum operating frequency: 450MHz.
- Nominal drive: Maximum operating frequency: 600MHz.
- Overdrive: Not supported.

The quad-core Mali-T624 cluster operates at nominal 600MHz, underdrive 450MHz, no overdrive.

Separate power domains support power management through Dynamic Voltage and Frequency Scaling (DVFS) of the Cortex-A57, Cortex-A53, and Mali-T624 GPU clusters.

Note

See the Juno Arm Development Platform SoC Technical Reference Manual (Revision r0p0) for more information on the Juno SoC.

LogicTile site

The V2M-Juno motherboard provides two headers that enable you to fit a Versatile Express LogicTile daughterboard. A Thin Links TLX Network Interconnect connects the motherboard and daughterboard.

Powerup and configuration

An on-board EEPROM stores board and file identification information and a microSD card stores software images and configuration files. You can access the microSD card to perform configuration file editing and to update software images.

Configuration of the V2M-Juno motherboard and the LogicTile daughterboard, if fitted, proceeds automatically under the control of the Motherboard Configuration Controller (MCC) after powerup or reset.

You can customize the clock speeds and other configuration settings.
IOFPGA

The IOFPGA provides low-bandwidth peripherals that the Juno SoC does not provide. The IOFPGA connects to the Juno SoC through a 32-bit Static Memory Bus (SMB) with dedicated chip selects.

The IOFPGA also contains energy meters, consisting of dedicated registers, that form part of the power control and DVFS system.

External user memory

8GB on-board DDR3L 800MHz connects to memory interfaces in the Juno SoC. 64MB NOR flash connects to the IOFPGA. The IOFPGA contains 256KB of user RAM.

Access ports

The V2M-Juno motherboard provides access through a general-purpose dual-UART, Static Memory Controller (SMC) 10/100 Ethernet, four USB 2.0 ports, and keyboard and mouse ports.

Note

The prototype version of the V2M-Juno motherboard also provides two SMC USB 2.0 ports. See B.1 Overview of the prototype V2M-Juno motherboard on page Appx-B-136 for information.

Video and audio output

The V2M-Juno motherboard provides dual HDMI outputs. The Juno SoC sends two independent 24-bit RGB video channels to the HDMI transmitters. Both HDMI ports share the I^2S audio from the Juno SoC.

Additional user key entry

The V2M-Juno motherboard supports trusted keyboard entry and additional key entry to simulate hand-held devices.

User LEDs

The V2M-Juno motherboard provides eight user LEDs that connect to the IOFPGA. The meanings of these LEDs depend on the software that you implement in the Juno SoC.

System LEDs

The V2M-Juno motherboard provides LEDs that denote the status of the board power supplies and read and write access to the configuration microSD card through the configuration USB port or configuration Ethernet port.

Debug

The V2M-Juno motherboard supports P-JTAG Processor debug that enables connection of DSTREAM, or a compatible third-party debugger. The board also supports 32-bit trace.

See the Juno Arm® Development Platform SoC Technical Reference Manual (Revision r0p0), revision r0, for more information. This document lists, in its Additional Reading section, references to Arm IP inside the Juno SoC.
1.3 Location of components on the V2M-Juno motherboard

The following figure shows the physical layout of the upper face of the V2M-Juno motherboard.

![Diagram of V2M-Juno motherboard layout](image)

Figure 1-1 V2M-Juno motherboard layout, upper face

Note

The production version of the V2M-Juno motherboard does not provide the SMC USB ports. The prototype V2M-Juno motherboard provides these ports. See *B.1 Overview of the prototype V2M-Juno*.

1 Introduction
motherboard on page Appx-B-136 for information on the prototype version of the V2M-Juno motherboard.
1.4 Connectors on front and rear panels

The following figure shows the front panel of the case.

![Front panel diagram](image)

Figure 1-2 Front panel

Note

The production version of the V2M-Juno motherboard does not provide the SMC USB ports. The prototype V2M-Juno motherboard provides these ports. See *B.1 Overview of the prototype V2M-Juno motherboard* on page Appx-B-136 for information on the prototype version of the V2M-Juno motherboard.

The following figure shows the rear panel of the case.

![Rear panel diagram](image)

Figure 1-3 Rear panel
Chapter 2
Hardware Description

This chapter describes the Versatile Express V2M-Juno motherboard hardware.

It contains the following sections:

- 2.1 Overview of V2M-Juno motherboard hardware on page 2-19.
- 2.2 Juno Arm® Development Platform SoC on page 2-23.
- 2.3 External power on page 2-26.
- 2.4 Power management and temperature protection on page 2-27.
- 2.5 Clocks on page 2-30.
- 2.6 Resets on page 2-37.
- 2.7 Thin Links on page 2-40.
- 2.8 IOFPGA on page 2-43.
- 2.9 HDLCD interface on page 2-46.
- 2.10 Interrupts on page 2-48.
- 2.11 USB 2.0 interface on page 2-51.
- 2.12 SMC 10/100 Ethernet interface on page 2-52.
- 2.13 UART interface on page 2-53.
- 2.14 Keyboard and mouse interface on page 2-55.
- 2.15 Additional user key entry on page 2-56.
- 2.16 Debug and trace on page 2-58.
2.1 Overview of V2M-Juno motherboard hardware

The V2M-Juno motherboard hardware supports software evaluation and tooling development using the Armv8 architecture in the Juno Arm Development Platform SoC.

The following figure shows the hardware infrastructure of the V2M-Juno motherboard.
Figure 2-1 V2M-Juno motherboard system architecture with LogicTile FPGA daughterboard
The V2M-Juno motherboard contains the following components and interfaces:

- One Juno Arm Development Platform SoC:
 - Dual-core Cortex-A57, quad-core Cortex-A53, and quad-core Mali-T624 GPU.
 - Memory interfaces, HDLCD display controllers, and other on-chip peripherals.
- Site for LogicTile Express daughterboard:
 - Two headers, HDRX and H Dry, enable you to fit any Versatile Express LogicTile daughterboard in this site.
 - Thin Links AXI master and slave interfaces to the LogicTile site.
- One Cortex-M3 Motherboard Configuration Controller (MCC):
 - Supports configuration of the Juno SoC and V2M-Juno motherboard at powerup or reset:
 - Clock generator configuration.
 - Loading of Real-Time Clock (RTC) registers.
 - Board configuration.
 - Pre-loading of external memory.
- One microSD card that stores the following:
 - Board configuration files.
 - Software images.
- One EEPROM that stores board identification information and file names for the configuration system.
- Configuration ports.
 - The following ports support Drag-and-Drop editing of configuration files in the configuration microSD card:
 - Configuration USB 2.0 port.
 - Configuration 10Mbps Ethernet port.
- Two 32-bit 4GB DDR3L on-board memories:
 - Low-power.
 - 800MHz, 1600 million transfers per second (MTs).
- Static Memory Controller (SMC) 10/100 Ethernet port that uses a LAN9118 Ethernet controller.
- Four USB 2.0 ports, USB 4-port hub and, USB PHY.
- Two UARTs:
 - UART 0 can connect to the Juno SoC or to the MCC.
 - UART 1 can connect to the Juno SoC or to the Daughterboard Configuration Controller on the LogicTile daughterboard that is fitted in the daughterboard site.
 - The board configuration files, that you can edit using the configuration ports, determine the connectivity of the UART ports during runtime.

 Note

 The Daughterboard Configuration Controller is a microcontroller on the LogicTile that controls the configuration of the daughterboard during powerup or reset.

- Two HDLCD ports that each support:
 - HDMI 1.4a up to 1080p.
 - One I2S four-channel stereo audio output.
- Additional user key entry:
 - Trusted User Keyboard entry using the secure keyboard connector.
 - Additional user key entry using the push buttons on the V2M-Juno motherboard to simulate handheld devices.
- IOFPGA that contains registers that form part of the Power Control and DVFS system.
 - The IOFPGA also provides access to the following low-bandwidth peripherals, user switches, and user LEDs that the Juno SoC does not provide:
 - 64MB NOR flash.
 - 256KB IOFPGA internal block RAM.
 - User microSD card slot.
 - Keyboard and mouse ports.
— Six user push buttons for additional user key entry.
— System registers.
— Current, voltage, power, and energy meters.
— Timers.
— Eight user LEDs. Application software defines their meaning.

Note

The prototype V2M-Juno motherboard also provides two SMC USB 2.0 ports that connect through the IOFPGA. See B.1 Overview of the prototype V2M-Juno motherboard on page Appx-B-136.

• On-board clocks that generate source clocks for Juno SoC and V2M-Juno motherboard systems.
• A real-time clock in the MCC. A 3V coin battery powers the real-time clock when the board is powered down.
• Three system LEDs that connect to the MCC as follows:

 ON1 LED:
 Reserved for Arm use only.

 ON2 LED:
 Denotes ATX power supply powered up.

 Debug USB LED:
 Denotes read or write access to the configuration microSD card through the configuration USB 2.0 port.

• Debug ports:
 — 32-bit Arm CoreSight Trace port.
 — Processor CoreSight debug (P-JTAG) port.
2.2 Juno Arm® Development Platform SoC

This section provides an overview of the components of the Juno Arm Development Platform SoC. This development chip, or Juno SoC, provides a dual-core Cortex-A57 cluster, a quad-core Cortex-A53 cluster, a quad-core Mali-T624 graphics cluster, interfaces, on-chip peripherals, and internal network connect.

The following figure shows the architecture of the Juno Arm Development Platform SoC.
The Juno Arm Development Platform SoC contains the following components and interfaces:

- Dual-core Cortex-A57 cluster:
 - 2MB L2 cache.
 - NEON and FPU.
 - Underdrive: Maximum operating frequency: 450MHz.
— Nominal drive: Maximum operating frequency: 800MHz.
— Overdrive: Maximum operating frequency: 1.1GHz.

• Quad-core Cortex-A53 cluster:
 — 1MB L2 cache.
 — NEON and Floating Point Unit (FPU).
 — Underdrive: Maximum operating frequency: 450MHz
 — Nominal drive: Maximum operating frequency: 700MHz.
 — Overdrive: Maximum operating frequency: 850MHz.

• Mali-T624 quad-core GPU cluster:
 — Underdrive: Maximum operating frequency: 450MHz.
 — Nominal drive: Maximum operating frequency: 600MHz.
 — Overdrive: Maximum operating frequency: Not supported.

• Internal AXI subsystem operating at up to 533MHz.

• Dual Arm HDLCD Display Controllers that support HDMI 1.4a up to 1080p.

• Dual DDR3L PHY and 32-bit DDR3L interfaces.

• Thin Links AXI master and slave interfaces to the LogicTile site. At the default clock frequency of 61.5MHz, the operating speeds are:
 — Master interface: 68MBps in the forward direction and 78MBps in the reverse direction.
 — Slave interface: 246MBps in the forward direction and 305MBps in the reverse direction.

 Note
 ◦ The forward direction is from master to slave and the reverse direction is from slave to master.
 ◦ Expansion AXI over Thin Links provides a 256MB window.

• USB 2.0 Host Controller. This is a 480Mbps ULPI interface to off-chip PHY.

• PL354 *Static Memory Controller* (SMC).

• PL330 *Direct Memory Access* (DMA) controller.

• CoreSight Processor debug (P-JTAG) and Trace.

• APB subsystem:
 — Dual-UART.
 — I²S 4-channel stereo audio.
 — *Power, Voltage, and Temperature* (PVT) monitoring of Juno Arm Development Platform SoC.
 — Non-volatile counter. A real-time clock that retains its stored value after powerdown.
 — *System Control Processor* (SCP). The SCP is a Cortex-M3 processor integrated into the Juno Arm Development Platform SoC. It initiates the system architecture and pre-load memory at powerup and performs power management and system control functions during runtime.
 — I²C. This connects to HDMI controllers, the UART transceiver, and other components on the V2M-Juno motherboard.
 — Secure I²C. Connects to the Secure Keyboard.
 — Keys. Encryption keys for signing software.
 — Random-number generator. Operates with the encryption keys when validating software.
 — System override registers that enable you to override various aspects of the Juno Arm Development Platform SoC.

See the *Juno Arm® Development Platform SoC Technical Reference Manual (Revision r0p0)* for more information. This document lists, in the *Additional Reading* section, references to Arm IP, such as the PL011 for example, inside the Juno SoC.
2.3 External power

The mains supply powers the V2M-Juno motherboard using the on-board connector, and an external power supply unit and connector cable that Arm supplies with the Juno Development Platform.

The external power supply unit converts mains power to 12V DC. This unit connects to the 12V DC connector on the rear panel of the case. The unit accepts mains power in the range 100-240V AC.

Warning

You must only use the external power supply unit that Arm supplies to power the board.

On-board regulators supply power to the V2M-Juno motherboard power domains and to the power domains of the Juno Arm Development Platform SoC.

Power LEDs indicate that power domains are active:

- **5V**: 5V domain powered.
- **3V3**: 3V3 domain powered.
- **SB_5V**: Standby 5V domain powered.

Related information

1.3 Location of components on the V2M-Juno motherboard on page 1-15

1.4 Connectors on front and rear panels on page 1-17

A.11 ATX power connector on page Appx-A-134
2.4 Power management and temperature protection

This section describes the internal power management and monitoring, and the overtemperature protection in the Juno SoC.

This section contains the following subsections:
• 2.4.1 Power control and Dynamic Voltage and Frequency Scaling (DVFS) on page 2-27.
• 2.4.2 Calibrating the PVT sensor on page 2-28.

2.4.1 Power control and Dynamic Voltage and Frequency Scaling (DVFS)

The V2M-Juno motherboard provides DVFS, in addition to monitoring the voltage, current, power, temperature, and energy monitoring of the Juno SoC power domains.

The V2M-Juno motherboard contains a Power Management IC (PMIC) that generates the V2M-Juno motherboard and Juno SoC power supplies. The Juno SoC configures the PMIC through the System Control Processor (SCP) I²C interface during powerup or reset.

Direct control of the PMIC through the SCP interface during runtime supports voltage scaling.

Varying the Juno Arm Development Platform SoC PLL dividers during runtime supports frequency scaling.

Note
Arm recommends that you use this method to achieve DVFS frequency scaling, not external control of the clock generators through the V2M-Juno motherboard SCP I²C interface.

Dedicated logic blocks in the IOFPGA contain current, voltage, power, and energy meters for the Cortex-A53, Cortex-A57, Mali-T624 GPU and, VSYS supplies. These register addresses are in the APB Registers memory space.

Note
The VSYS supply powers the fabric of the Juno SoC outside the Cortex-A53, Cortex-A57, and Mali-T624 GPU clusters.

The following figure shows the V2M-Juno motherboard power control and DVFS system.
2.4 Power management and temperature protection

Related information
4.5.1 APB energy register summary on page 4-104

2.4.2 Calibrating the PVT sensor

The Juno SoC provides a Power, Voltage and Temperature sensor that powers down the chip when it exceeds the maximum operating temperature. It also selectively powers down parts of the chip when it exceeds the temperature budget.

If you use Intelligent Power Aware Software scheduling in the Linux kernel, you must calibrate the PVT sensor.
Use the RECAL command in the Command-Line interface to calibrate the PVT sensor. Before calibrating the PVT sensor you must:

- Ensure that all firmware images are at least version MCC v119.
- Allow the board to reach ambient temperature by powering it down for at least 60 minutes.

The RECAL command returns an estimate of ambient temperature that you can accept or overwrite. Arm recommends that you provide your own value, in degrees Celsius (°C).

The following text is an example UART log of a PVT calibration:

```
Cmd>RECAL

WARNING: SoC PVT recalibration has been requested.
This will permanently overwrite the current SoC calibration settings.

The board must have been unplugged for at least 60 minutes before starting this recalibration.

Do you wish to continue(Y/N)?y

Waiting for MCC to stabilise...

Room temperature measured by MCC: 23.5 deg C
Do you wish to use this room temperature (Y/N)?n

Please enter room temperature in deg C (15.0 to 30.0):23.6

SoC PVT recalibration (23.6 deg C)
Reading PVT sensors
Updated calibration:1707:1E6C:2586:1F24:263E:1EF8:2612

SoC PVT recalibration complete
```

Related information

3.6.3 MCC main command menu on page 3-77
2.5 Clocks

This section describes the V2M-Juno motherboard clocks that drive the board, the Juno Arm Development Platform SoC, and the LogicTile, if fitted in the daughterboard site.

This section contains the following subsections:

- 2.5.1 Overview of clocks on page 2-30.
- 2.5.2 Juno SoC and V2M-Juno motherboard clocks on page 2-30.
- 2.5.3 IOFPGA clocks on page 2-34.

2.5.1 Overview of clocks

Clock generators on the V2M-Juno motherboard generate clocks for the internal blocks in the Juno Arm Development Platform SoC, the internal blocks in the IOFPGA, and the peripherals on the board.

During powerup or reset, internal EEPROMs in the clock generators configure the generators to the correct operational clock frequencies. The board.txt file also defines these default clock frequencies. You can change the operational clock frequencies by modifying the configuration board.txt file.

Note

Arm recommends that you operate the V2M-Juno motherboard at the default clock frequencies.

Related information

3.3.3 Contents of the MB directory on page 3-71

2.5.2 Juno SoC and V2M-Juno motherboard clocks

The following figure shows the Juno Arm Development Platform SoC clocks and clock domains. The figure includes the clocks that connect to the LogicTile Express daughterboard, to some of the peripherals on the V2M-Juno motherboard, and to the IOFPGA.
Figure 2-4 Juno Arm Development Platform SoC system clocks

The following table shows the internal Juno SoC and V2M-Juno motherboard clocks and their sources.
Table 2-1 Juno SoC clocks and their sources on the V2M-Juno motherboard

<table>
<thead>
<tr>
<th>Juno SoC clock</th>
<th>Source</th>
<th>Juno SoC clock default frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AON_REF_CLK</td>
<td>OSCCLK 1</td>
<td>50MHz</td>
<td>Source clock for the I²C clock generator and reference clock for the SCP PLL inside the Juno SoC. This derives the following clock: SCPHCLK: SCP subsystem and AHB expansion area clock.</td>
</tr>
</tbody>
</table>
Table 2-1 Juno SoC clocks and their sources on the V2M-Juno motherboard (continued)

<table>
<thead>
<tr>
<th>Juno SoC clock</th>
<th>Source</th>
<th>Juno SoC clock default frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXL_REF_CLK</td>
<td>OSCCLK 2</td>
<td>50MHz</td>
<td>Reference clock for the HDLCD PLL inside the Juno SoC. This generates PXL_PLL_CLK, 23.75MHz.</td>
</tr>
<tr>
<td>HDLCDC0_PXL_CLK_OUT</td>
<td>HDLCD0 in Juno SoC</td>
<td>165MHz</td>
<td>Pixel clock to HDMI PHY 0 on the V2M-Juno motherboard. The default operating frequency of the PHY, 165MHz, is also the maximum operating frequency.</td>
</tr>
<tr>
<td>HDLCDC1_PXL_CLK_OUT</td>
<td>HDLCD1 in Juno SoC</td>
<td>165MHz</td>
<td>Pixel clock to HDMI PHY 1 on the V2M-Juno motherboard. The default operating frequency of the PHY, 165MHz, is also the maximum operating frequency.</td>
</tr>
<tr>
<td>S32K_CLK</td>
<td>CLK_32K clock generator</td>
<td>32.768kHz</td>
<td>Fixed frequency real-time clock. Provides a real-time private time domain for the SCP that uses it to implement very low-power sleep modes.</td>
</tr>
<tr>
<td>I2S_CLK</td>
<td>OSCCLK 4</td>
<td>2.11MHz</td>
<td>Integrated-IC sound clock. Clocks the I²S audio bus.</td>
</tr>
<tr>
<td>I2C_CLK</td>
<td>OSCCLK 1</td>
<td>50MHz</td>
<td>Clocks the I²C control bus.</td>
</tr>
<tr>
<td>UART_CLK</td>
<td>OSCCLK 11</td>
<td>7.3728MHz</td>
<td>Clocks the UART interface.</td>
</tr>
<tr>
<td>TCK</td>
<td>Trace connector</td>
<td>25MHz</td>
<td>From external trace port analyzer. Clocks the Trace debug system.</td>
</tr>
<tr>
<td>ULPI_CLK</td>
<td>USB2 2.0 xtal clock generator</td>
<td>60MHz</td>
<td>Fixed frequency clock. Clocks the USB 2.0 Transceiver Macrocell Interface Low-Pin Interface (ULPI) from the off-chip PHY.</td>
</tr>
<tr>
<td>USB_CLK48</td>
<td>CLK_48M clock generator</td>
<td>48MHz</td>
<td>Primary clock input to the USB controller.</td>
</tr>
<tr>
<td>SMC_MCLK</td>
<td>OSCCLK 5</td>
<td>50MHz</td>
<td>Clocks the PL354 Static Memory Controller (SMC) interface.</td>
</tr>
<tr>
<td>SMC_FB_CLK</td>
<td>IOFPGA</td>
<td>50MHz</td>
<td>Feedback clock from IOFPGA to read data back into the PL354 in synchronous mode. The SMC uses this to adjust timing.</td>
</tr>
<tr>
<td>SMC_CLKO</td>
<td>OSCCLK 5</td>
<td>50MHz</td>
<td>Derived from SMC_MCLK. Exported from Juno SoC to the SMB timing adjust block in the IOFPGA.</td>
</tr>
<tr>
<td>CFG_CLK</td>
<td>MCC</td>
<td>10MHz</td>
<td>Serial Configuration Controller (SCC) serial interface clock.</td>
</tr>
<tr>
<td>TMIF_CLKI</td>
<td>TLX-400 Thin Links AXI slave interface in FPGA on LogicTile fitted in daughterboard site.</td>
<td>61.5MHz</td>
<td>Clock in the receive direction to the TLX-400 Thin Links AXI master interface on the Juno SoC.</td>
</tr>
<tr>
<td>TMIF_CLKO</td>
<td>TLX-400 Thin Links AXI master interface reference clock generator in Juno SoC.</td>
<td>61.5MHz</td>
<td>Clock in the transmit direction from the TLX-400 Thin Links AXI master interface on the Juno SoC.</td>
</tr>
</tbody>
</table>
The MCC uses the board.txt configuration file in the microSD card to set the frequency of the board clock generators. You can adjust these default clock frequencies by editing this file. You can also adjust the board clocks during runtime by using the SYS_CFG register interface.

The Juno SoC has internal PLLs and clock generators that generate clocks to drive the Juno SoC internal systems.

2.5.3 IOFPGA clocks

The following figure shows the IOFPFA clocks and clock domains.

<table>
<thead>
<tr>
<th>Juno SoC clock</th>
<th>Source</th>
<th>Juno SoC clock default frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSIF_CLKI</td>
<td>TLX-400 Thin Links AXI master interface in FPGA on LogicTile fitted in daughterboard site.</td>
<td>61.5MHz</td>
<td>Clock in the receive direction to the TLX-400 Thin Links AXI slave interface on the Juno SoC.</td>
</tr>
<tr>
<td>TSIF_CLKO</td>
<td>TLX-400 Thin Links AXI slave interface reference clock generator in Juno SoC.</td>
<td>61.5MHz</td>
<td>Clock in the transmit direction from the TLX-400 Thin Links AXI slave interface on the Juno SoC.</td>
</tr>
</tbody>
</table>
The bootup clock for the peripherals in the SMB_CLK domain during powerup and configuration is OSCCLK 9 on the V2M-Juno motherboard. The clock source then switches to SMB_CLKO from the Juno SoC that becomes the master clock for the SMB_CLK domain during runtime.
<table>
<thead>
<tr>
<th>Clock name</th>
<th>Source</th>
<th>Default Frequency</th>
<th>Description</th>
</tr>
</thead>
</table>
| SMB_CLK | OSCCLK 9 during powerup and configuration
SMC_CLKO during runtime | 50MHz | Reference clock for the SMB_CLK domain. This domain contains the following IOFPGA peripherals and subsystems:
• AHB subsystem.
• APB subsystem.
• PL031 Real-Time Clock.
• APB system registers.
• System Bus Controllers, SBCOn.
• SP805 Watchdog Timer.
• SP804 Dual-Timers.
• PL061 GPIO.
• SP810 System Controller. |
| CLK_24MHZ | CLK_24MHZ clock generator. | 24MHz fixed frequency | Reference clock for the following blocks inside the SMB_CLK clock domain:
• PL180 MultiMedia Card Interface.
• PL050 Keyboard and mouse interfaces.
• Energy meters, that is, the voltage, current, power, and accumulated energy meters.
• The clock generator that generates the 32kHz and 1MHz source clocks for the SP810 System Controller and the 1Hz clock for the PL031 Real-Time Clock.

Note
- The SP810 System Controller selects 32kHz or 1MHz as the sources for TIM_CLK[3:0], the SP804 timer clocks. The powerup default is 32kHz.
- It also generates the SP805 clock, WDT_CLK.
• The frequency of the clock 32kHz is 32.768kHz. |
| SMB_MCLK | MCC | 50MHz | Master clock for the SMB_MCLK domain that includes the MCC and the MCC to AHB fabric in the IOFPGA. |
2.6 Resets

This section describes the reset push buttons, the reset architecture, and the reset timing sequence.

This section contains the following subsections:

• 2.6.1 Reset push buttons on page 2-37.
• 2.6.2 Reset architecture on page 2-37.
• 2.6.3 Reset sequence on page 2-39.

2.6.1 Reset push buttons

The V2M-Juno motherboard provides two reset push buttons.

Hardware Reset push button

Pressing the Hardware Reset button during runtime generates nPBRESET, that performs a hardware reset, and puts the system into standby-state.

--- Note ---

The Hardware Reset push button is the black push button. The V2M-Juno motherboard labels it as nPBRESET.

ON/OFF/Soft Reset push button

Pressing the ON/OFF/Soft Reset button:

• Briefly during runtime performs a software reset of the system.
• For more than two seconds puts the system into the standby-state in the same way as pressing the Hardware Reset button.

--- Note ---

The ON/OFF/Soft Reset push button is the red push button. The V2M-Juno motherboard labels it as nPBON.

When you use the system with bare metal software, you must make the following setting in the config.txt file to enable direct control of the OFF/Soft Reset feature:

PBONFORCE: TRUE ;RED PBON push button directly drives RESET/SHUTDOWN

--- Related information ---

3.5.1 Use of ON/OFF/Soft Reset button on page 3-76
3.5.2 Use of Hardware Reset button on page 3-76
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17

2.6.2 Reset architecture

The following figure shows an overview of the V2M-Juno motherboard reset system.
Figure 2-6 V2M-Juno motherboard resets

CB_nPOR

This is the main powerup reset for the Juno Arm Development Platform SoC, and the devices and peripherals on the V2M-Juno motherboard including the IOFPGA. Signal CB_nPOR drives signal nPBRESET inside the Juno Arm Development Platform SoC.
nTRST
This resets the CoreSight DAP and the TAP controllers inside the Juno SoC.

CFG_nRST
This is the reset signal for the serial interface to the SCC registers in the Juno Arm Development Platform SoC. It resets the SCC registers to their default values. It also resets the IOFPGA peripherals and the clock generators on the V2M-Juno motherboard.

2.6.3 Reset sequence
The following figure shows the reset and configuration timing sequence.
2.7 Thin Links

This section describes the Thin Links master and slave interfaces that connect the Juno SoC to the daughterboard through the motherboard tile site.

This section contains the following subsections:
• 2.7.1 Overview of Thin Links AXI master and slave interfaces on page 2-40.
• 2.7.2 Thin Links master interface on page 2-41.
• 2.7.3 Thin Links slave interface on page 2-42.

2.7.1 Overview of Thin Links AXI master and slave interfaces

The Juno Arm Development Platform SoC contains one AXI master interface and one slave AXI interface that connect to the FPGA in the LogicTile Express daughterboard fitted in the V2M-Juno motherboard tile site. A Thin Links TLX-400 interface compresses the AXI master and slave interfaces to reduce the pin count.

The width of the TLX-400 slave interface on the Juno Arm Development Platform SoC is greater than the width of the master interface.

The default Thin Links clock frequency of 61.5MHz gives the following operating speeds:

• Juno SoC master interface:
 — Forward direction, that is, from the Juno SoC to the FPGA: 68MBps.
 — Reverse direction, that is, from the FPGA to the Juno SoC: 78MBps.

• Juno SoC slave interface:
 — Forward direction, that is, from the FPGA to the Juno SoC: 246MBps.
 — Reverse direction, that is, from the Juno SoC to the FPGA: 305MBps.

——— Note ———
Arm recommends that you operate the Thin Links interfaces at the default speeds. See 3.3.4 Contents of the SITE1 directory on page 3-72 for an example board.txt configuration file that sets the Thin Links clocks to 61.5MHz.

The following table shows the Thin Links timing requirements.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsu</td>
<td>1.2ns</td>
<td>-</td>
<td>Input data parameter. Minimum data setup time before clock edge.</td>
</tr>
<tr>
<td>Th</td>
<td>1.0ns</td>
<td>-</td>
<td>Input data parameter. Minimum data hold time after clock edge.</td>
</tr>
<tr>
<td>Tcomin</td>
<td>-2.5ns</td>
<td>-</td>
<td>Tcomin is relative to clock edge. Data is available on the bus between Tcomin and Tcomax.</td>
</tr>
<tr>
<td>Tcomax</td>
<td>2.5ns</td>
<td>-</td>
<td>Tcomax is relative to clock edge. Data is available on the bus between Tcomin and Tcomax.</td>
</tr>
</tbody>
</table>

——— Note ———
Any Versatile Express LogicTile daughterboard fitted in the tile site that implements an Arm application note meets these timing requirements.
Any design that you implement in a Versatile Express LogicTile daughterboard, or in your own daughterboard, must meet these timing requirements.

2.7.2 Thin Links master interface

The following figure shows the Thin Links TXL-400 master interface on the Juno Arm Development Platform SoC and its connection to the Think Links TXL-400 slave interface on the LogicTile Express daughterboard.

![Diagram of Thin Links master interface](image)

Figure 2-8 Thin Links AXI master interface
2.7.3 Thin Links slave interface

The following figure shows the Thin Links TXL-400 slave interface on the Juno Arm Development Platform SoC and its connection to the Thin Links TXL-400 master interface on the LogicTile daughterboard.

Figure 2-9 Thin Links AXI slave interface
2.8 IOFPGA

The IOFPGA provides access to low bandwidth peripherals that the Juno Arm Development Platform SoC does not provide. The Juno Arm Development Platform SoC provides access to the IOFPGA through an SMC interface.

The following figure shows the internal architecture of the IOFPGA and its connectivity to external peripherals, including the external interrupts to the GIC-400 interrupt controller in the Juno Arm Development Platform SoC.
Figure 2-10 IOFPGA internal architecture
The following table shows the peripherals and buses inside the IOFPGA.

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>Interface or application</th>
<th>Release version</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL031</td>
<td>RTC.</td>
<td>r1p0.</td>
</tr>
<tr>
<td>PL050</td>
<td>Keyboard and mouse interfaces.</td>
<td>r1p0.</td>
</tr>
<tr>
<td>PL061</td>
<td>GPIO for additional user key entry and trusted keyboard entry.</td>
<td>r1p0.</td>
</tr>
<tr>
<td>PL180</td>
<td>User microSD card.</td>
<td>r1p0.</td>
</tr>
<tr>
<td>SP804</td>
<td>Dual-timer.</td>
<td>r2p0.</td>
</tr>
<tr>
<td>SP805</td>
<td>Watchdog Timer.</td>
<td>r2p0.</td>
</tr>
<tr>
<td>PL350 Series</td>
<td>SMC Controller.</td>
<td>r1p0.</td>
</tr>
<tr>
<td>AHB bus</td>
<td>-</td>
<td>AMBA 3 AHB-Lite Protocol Specification v1.0.</td>
</tr>
<tr>
<td>APB bus</td>
<td>-</td>
<td>AMBA 3 APB Protocol Specification v1.0.</td>
</tr>
</tbody>
</table>

Note
The peripheral versions apply to the Revision B V2M-Juno motherboard.

Related information
4.2.2 IOFPGA system peripherals memory map on page 4-84
2.9 HDLCD interface

Two HDMI PHYs on the V2M-Juno motherboard provide video graphics.

Two HDLCD controllers in the Juno Arm Development Platform SoC support all common 24-bit RGB formats. These are simple frame buffers whose RGB video connects to I/O drivers that drive the PHYs. The PHYs can operate at a maximum pixel clock frequency of 165MHz. This interface supports HDMI 1.4a up to 1080p.

A typical use of HDLCD0 is for lower resolution video than HDLCD1.

The HDLCD 24-bit data connects directly between the Juno Arm Development Platform SoC and the HDMI controllers on the V2M-Juno motherboard. The HDMI controllers drive the HDMI connectors. The Juno Arm Development Platform SoC configures the HDMI controllers at powerup or reset over the AP I^2C bus.

The HDMI controllers support I^2S audio from the Juno Arm Development Platform SoC. They drive the audio to the HDMI connectors. The same audio stream connects to both HDMI connectors.

Note
Software that Arm supplies with the V2M-Juno motherboard configures the Juno SoC and board to enable correct operation of the HDLCD interface and correct HDMI output.

The following figure shows the HDLCD video system on the V2M-Juno motherboard.
Related information

A.8 HDMI connectors on page Appx-A-130
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
2.10 Interrupts

The Juno Arm Development Platform SoC implements a GIC-400 generic interrupt controller with 13 external interrupts:

- Seven of the external interrupts connect to IOFPGA peripherals.
- One external interrupt connects to the SMC 10/100 Ethernet.
- One external interrupt connects to the MCC.
- One external interrupt connects to the LogicTile daughterboard site.
- The other three external interrupts are reserved.

--- Note ---

The prototype board provides an SMC USB 2.0 interface that the production board does not provide. The SMC USB 2.0 uses one of the reserved interrupts leaving two external interrupts as reserved on the prototype board.

The MCC generates its interrupt when you press the ON/OFF/Soft Reset push button. All interrupts connect to the GIC-400 interrupt controller in the Juno Arm Development Platform SoC through the IOFPGA.

The following figure shows an overview of the external interrupt signals from the V2M-Juno motherboard peripherals to the GIC-400 interrupt controller in the Juno Arm Development Platform SoC.
Figure 2-12 Juno Arm Development Platform SoC interrupts overview
The following table shows the mapping of the external interrupt signals to the GIC-400 controller in the Juno Arm Development Platform SoC. It lists the sources of the interrupts that originate in the V2M-Juno motherboard or the LogicTile Express fitted in the daughterboard site.

Table 2-5 External interrupt signals to Juno SoC

<table>
<thead>
<tr>
<th>Interrupt ID</th>
<th>GIC IRQ ID</th>
<th>Motherboard signal name</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-99</td>
<td>64-67</td>
<td>-</td>
<td>Juno Arm Development Platform SoC internal peripherals and systems.</td>
</tr>
<tr>
<td>100</td>
<td>68</td>
<td>SB_IRQ[0]</td>
<td>IOFPGA-PL031 RTC.</td>
</tr>
<tr>
<td>103-191</td>
<td>71-159</td>
<td>-</td>
<td>Juno Arm Development Platform SoC internal peripherals and systems.</td>
</tr>
</tbody>
</table>
| 193 | 161 | SB_IRQ[4] | • Prototype board:
| | | | — IOFPGA-SMC USB 2.0.
| | | | • Production board:
| | | | — IOFPGA-Reserved interrupt. |
| 195 | 163 | SB_IRQ[6] | IOFPGA-PL061 GPIO (0) and GPIO (1) used for additional user key entry. |
| 196 | 164 | SB_IRQ[7] | IOFPGA-SP805 WDT. |
| 198 | 166 | SB_IRQ[9] | IOFPGA-SP804 Dual-timer (0-1) and SP804 dual-timer (2-3). |
| 201 | 169 | SB_IRQ[12] | MCC-Interrupt generated by pressing the ON/OFF/Soft Reset push button. |
| 202-223 | 170-191 | - | Juno Arm Development Platform SoC internal peripherals and systems. |

Note

See the Juno Arm® Development Platform SoC Technical Reference Manual (Revision r0p0) for information on the interrupts from the systems in the Juno Arm Development Platform SoC.

See B.1 Overview of the prototype V2M-Juno motherboard on page Appx-B-136 for information on interrupts SB_IRQ[4:3] on the prototype V2M-Juno motherboard.
2.11 USB 2.0 interface

The Juno Arm Development Platform SoC provides a USB 2.0 interface. The interface is capable of 480Mbps.

The host controller on the Juno Arm Development Platform SoC connects to an external PHY on the V2M-Juno motherboard. This PHY connects to a four-port hub that connects to four USB 2.0 user ports.

Each port can supply one amp to an external load.

The following figure shows the USB 2.0 system, the host controller, PHY, and hub.

Figure 2-13 V2M-Juno motherboard USB 2.0 interface

Related information
A.2 Configuration 10Mbps Ethernet and dual-USB connector on page Appx-A-124
A.3 Dual-USB connector on page Appx-A-125
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
2.12 SMC 10/100 Ethernet interface

The Juno Arm Development Platform SoC provides a 10/100 Ethernet port. This port connects to the Static Memory Controller (SMC) bus through a LAN9118 Ethernet controller and the IOFPGA. The LAN9118 Ethernet controller is mapped to chip select CS2 of the PL354 SMC memory controller at base address \(0x18000000\). See Juno Arm Development Platform SoC Technical Reference Manual (Revision r0p0).

The following figure shows the SMC 10/100 Ethernet interface.

![SMC 10/100 Ethernet interface diagram]

Figure 2-14 V2M-Juno motherboard SMC 10/100 Ethernet interface

Related information

1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
A.4 SMC 10/100 Ethernet connector on page Appx-A-126
2.13 UART interface

The Juno Arm Development Platform SoC provides a dual-port UART interface.

The UART 0 transceiver can connect to one of the following:

- The MCC.
- The UART 0 interface on the Juno SoC.

The UART 1 transceiver can connect to one of the following:

- The Daughterboard Configuration Controller on the LogicTile daughterboard.
- The UART 1 interface on the Juno SoC.
- The MCC.

Variables MBLOG and DBLOG in the config.txt file define the connections of the UART transceivers.

The MBLOG options are:

- FALSE:
 - MCC not connected. The Juno SoC UART 0 interface connects to the UART 0 transceiver.
- UART0:
 - The MCC connects to the UART 0 transceiver.
- UART1:
 - The MCC connects to the UART 1 transceiver.

The DBLOG options are:

- FALSE:
 - Daughterboard Configuration Controller not connected. The Juno SoC UART 1 interface connects to the UART 1 transceiver.
- UART1:
 - The Daughterboard Configuration Controller connects to the UART 1 transceiver.

Note

If you set option UART1 for both MBLOG and DBLOG, MBLOG overrides DBLOG and the UART 1 transceiver connects to the MCC, UART 0 transceiver connects to the UART 0 interface on the Juno SoC, and the Daughterboard Configuration Controller is not connected.

The default connection of the UART 0 transceiver is to the MCC at powerup and then it switches to the Juno SoC UART 0 interface.

The default connection of the UART 1 transceiver is to the Daughterboard Configuration Controller at powerup and then it switches to the Juno SoC UART 1 interface.

The following figure shows the UART interface to the V2M-Juno motherboard.
2 Hardware Description

2.13 UART interface

100113_0000_07_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights reserved. Non-Confidential

Related information

A.9 Dual-UART connector on page Appx-A-131
3.3.2 config.txt generic motherboard configuration file on page 3-71
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
2.14 **Keyboard and mouse interface**

The V2M-Juno motherboard provides two KMI ports for PS/2 keyboard and mouse input to the system. The keyboard and mouse inputs connect to PL050 interfaces in the IOFPGA. The following figure shows the V2M-Juno motherboard KMI interface.

![V2M-Juno motherboard KMI interface diagram](image)

Figure 2-16 V2M-Juno motherboard KMI interface

Related information

- A.7 *Keyboard and Mouse Interface (KMI) connector* on page Appx-A-129
- 1.3 *Location of components on the V2M-Juno motherboard* on page 1-15
- 1.4 *Connectors on front and rear panels* on page 1-17
2.15 Additional user key entry

The V2M-Juno motherboard provides the following methods of additional user key entry:

- Trusted keyboard entry using the secure keyboard entry port on the Juno Arm Development Platform SoC:
 - This method requires a custom external device with decode circuitry for key entry.
 - The Juno Arm Development Platform SoC controls the trusted keyboard over a secure I²C bus.
 - Supports touch screen display. A touch screen secure keyboard interface board with a built-in controller enables use of a resistive touch screen.

- Six user push buttons on the V2M-Juno motherboard that emulate hand-held devices. The push buttons provide access through IOFPGA GPIO.

A single 9-pin Mini-Din socket on the top face of the V2M-Juno motherboard provides a secure keyboard entry port for entry using an external keyboard. The following figure shows the additional user key interface and its connections to the user push buttons on the V2M-Juno motherboard.

--- Note ---

One user push button input, NU/NMI, to the FPGA is not available to the external secure keyboard custom device.

![Diagram showing additional user key entry interface](image)

Figure 2-17 Additional user key entry interface

The following figure shows an example trusted keyboard design using an external custom device that connects to the secure keyboard entry port.
Custom external device with decode circuitry for key entry

Figure 2-18 Example trusted keyboard design

Related information
A.10 Secure keyboard and user push buttons connector on page Appx-A-133
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
2.16 Debug and trace

The V2M-Juno motherboard supports processor debug, P-JTAG, 16-bit and 32-bit trace to enable software debug and trace in the Juno Arm Development Platform SoC.

You connect a debug unit to the P-JTAG connector on the V2M-Juno motherboard to run processor debug, P-JTAG.

--- Note ---

The processor debug device can be any compatible debug unit, for example DSTREAM, or a compatible third-party debugger.

You connect a compatible trace port analyzer, for example DSTREAM, or a compatible third-party debugger, to the TRACEA-SINGLE connector to run 16-bit trace or to both the TRACEA-SINGLE and TRACEB-DUAL connector to run 32-bit trace.

The following figure shows an overview of the V2M-Juno motherboard debug and trace architecture.
Figure 2-19 V2M-Juno motherboard debug architecture
See the Juno Arm® Development Platform SoC Technical Reference Manual (Revision r0p0) for more information on the Juno Arm Development Platform SoC debug architecture.

Related information

- A.1.1 P-JTAG connector on page Appx-A-120
- A.1.2 Trace connectors on page Appx-A-121
- 1.3 Location of components on the V2M Juno motherboard on page 1-15
- 1.4 Connectors on front and rear panels on page 1-17
This chapter describes the powerup and configuration process of the Versatile Express V2M-Juno motherboard.

It contains the following sections:

• 3.1 Overview of the V2M-Juno motherboard configuration system on page 3-62.
• 3.2 Configuration process and operating modes on page 3-64.
• 3.3 Configuration files on page 3-69.
• 3.4 Configuration switches on page 3-74.
• 3.5 Use of reset push buttons on page 3-76.
• 3.6 Command-line interface on page 3-77.
3.1 Overview of the V2M-Juno motherboard configuration system

The V2M-Juno motherboard provides hardware infrastructure to enable board configuration during powerup or reset. The MCC, in association with the configuration microSD card, configures the V2M-Juno motherboard during powerup or reset.

When the configuration process starts after application of power, or a press of the ON/OFF/Soft Reset button, the configuration process completes without further intervention from the user.

The MCC controls the transitions of the V2M-Juno motherboard between the operating states in response to presses of the reset buttons or powerdown requests from the operating system.

The following figure shows the V2M-Juno motherboard configuration system.

![Figure 3-1 V2M-Juno motherboard configuration system](image-url)
The configuration microSD card stores the V2M-Juno motherboard configuration files, including the `board.txt` file. You can access the microSD card as a *Universal Serial Bus Mass Storage Device* (USBMSD).

The EEPROM contains the following information that the MCC uses during the configuration process.

- Board HBI number.
- Board revision.
- Board variant.
- Number of FPGAs.
- Names of the current images in 8.3 format and the file creation dates.
- Juno Arm Development Platform SoC calibration data.

Note

- The HBI number is a unique code that identifies the board. The root directories of the microSD card contain sub-directories in the form `HBI<BoardNumber><Boardrevision>`, for example HBI0262B. HBI0262 is the HBI number of the V2M-Juno motherboard.
- If the MCC does not find a configuration directory that matches the HBI number of the board, the configuration process fails and the board enters the standby state.
3.2 Configuration process and operating modes

This section describes the powerup and configuration process, the powerdown process and the transitions between the operating-state and the sleep-state.

This section contains the following subsections:
• 3.2.1 Transitions between operating modes on page 3-64.
• 3.2.2 Powerup and configuration sequence on page 3-65.
• 3.2.3 Powerdown sequence on page 3-66.
• 3.2.4 Sleep-state sequence on page 3-67.
• 3.2.5 Wake-up sequence on page 3-67.

3.2.1 Transitions between operating modes

The power reset push buttons and configuration files control the sequence of events of the powerup and configuration process and the transitions between the different states of the V2M-Juno motherboard.

The V2M-Juno motherboard has the following operating modes:

Standby-state
The V2M-Juno motherboard and Juno Arm Development Platform SoC are mostly powered down. The powerup and configuration sequence takes them to the operating-state.

Operating-state
This is the full operating mode. All peripherals, clocks, and application code operate. The powerdown sequence takes the board to the standby-state and the sleep-state sequence takes it to the sleep-state.

Sleep-state
This state powers down the Juno Arm Development Platform SoC clusters and preserves operating data and the application code start-point. Application code resumes when the Juno Arm Development Platform SoC returns to the operating-state.

Note
The system cannot return directly to the standby-state from the sleep-state. It must return to the operating-state before the powerdown sequence can begin.

The following figure shows the configuration process and the transitions between the standby-state, operating-state, and sleep-state of the V2M-Juno motherboard.
3.2.2 Powerup and configuration sequence

The powerup and configuration sequence takes the V2M-Juno motherboard from the standby-state to the operating-state.

Pressing the On/Off/Soft Reset button initiates the following sequence:
1. The board applies power to the system.
2. The MCC powers the EEPROM on the V2M-Juno motherboard and the EEPROM on any fitted LogicTile daughterboard and reads them to determine the HBI identification codes for the boards.
3. The system enters standby-state.
4. The system enables the MCC command-line interface on the UART.
5. The MCC reads the V2M-Juno configuration files from microSD card.
6. The MCC enables VAON, VIO, VSYS, Cortex-A53, Cortex-A57, and Mali-T624 GPU.
7. The MCC enables S32K_CLK, SYS_REF_CLK, and V2M-Juno board clocks.
8. The MCC reads the daughterboard configuration files and starts configuration of the daughterboard.
9. The MCC releases the SCC reset CFG_nRST.
10. The MCC pre-loads the FLASH images.
11. If the CB_nPOR and CB_nRST resets are released, the processor starts executing code.
12. If an SCP wake-up sequence occurs, the system enters operating-state and runs ROM or FLASH image.
13. If the Hardware RESET or On/Off/Soft Reset button is pressed briefly, the system goes into sleep-state.
14. If the Hardware RESET button is pressed for more than 2 seconds, the system powers down.

Figure 3-2 Transitions between standby-state, operating-state, and sleep-state
5. The system enables the configuration microSD memory card and you can connect a workstation to the configuration USB port or configuration Ethernet port to edit existing configuration files or Drag-and-Drop new configuration files.

6. The system remains in standby-state until you press the ON/OFF/Soft Reset push button or you send the REBOOT command to the MCC command-line interface.

7. The system loads the board configuration file:
 - The MCC reads the generic config.txt file.
 - The MCC searches the configuration microSD card MB directory for the V2M-Juno motherboard HBI0262 subdirectory that matches the HBI code in the EEPROM.
 - If a LogicTile daughterboard is fitted, the MCC searches the configuration microSD card SITE2 directory for a subdirectory that matches the HBI code in the fitted LogicTile EEPROM.

8. The next steps depend on the configuration files:
 - If the MCC finds configuration subdirectories that match the HBI code of the V2M-Juno motherboard and any fitted LogicTile daughterboard, configuration continues and the MCC reads the daughterboard board.txt file.
 - If the MCC does not find the correct configuration files, it records the failure to a log file on the configuration microSD card. Configuration stops and the system re-enters standby-state.

9. The MCC switches on the ATX PSU and power domains in the Juno SoC using the board power controller PMIC.

10. The MCC enables the SCP 32kHz clock, SYS_REF_CLK on the Juno SoC, and clock generators on the V2M-Juno motherboard.
 - The SCP in the Juno SoC boots from internal ROM and then performs the basic setup of the Juno SoC including the PLLs, internal clocks, and peripherals inside the Juno SoC.
 - The SCP releases the Power Policy Units (PPUs) to start the cluster boot sequences.

11. The MCC measures the board power supplies.

12. The MCC reads the IOFPGA image from the configuration microSD card and loads it into the IOFPGA.

13. The MCC sets the board oscillator frequencies using values from the board.txt file.

14. If the MCC finds new software images, it loads them into the FLASH through the IOFPGA.

15. The MCC releases the SCC reset CFG_nRST.

16. The MCC configures the Juno Arm Development Platform SoC SCC registers using values from the board.txt file.

17. The MCC releases the system resets CB_nPOR and CB_nRST and the system enters the operating-state.

 Note
 The CB_nPOR signal drives the nPORESET signal inside the Juno SoC.

18. The application code runs. Normal operation continues until a reset occurs:
 - Any of the following initiate the powerdown sequence and puts the V2M-Juno motherboard into the standby-state:
 - Pressing the Hardware Reset button.
 - Pressing and holding the On/Off/Soft Reset button.
 - A powerdown request from the operating system.
 - A short press of the On/Off/Soft Reset button initiates the sleep-state sequence and puts the V2M-Juno motherboard into the sleep-state.

3.2.3 Powerdown sequence

The powerdown sequence takes the V2M-Juno motherboard from the operating-state to the standby-state.

The powerdown sequence is:

1. The powerdown sequence begins with one of the following:
• Pressing the Hardware Reset button.
• Pressing and holding the On/Off Soft Reset button for more than two seconds.
• A powerdown request from the operating system.

2. The System Control Processor (SCP) signals a powerdown request to the application cluster, that is, either the Cortex-A57 cluster or the Cortex-A53 cluster.

3. The application cluster goes through its cleanup and shutdown sequence.

4. The application cluster goes to the Wait for Interrupt (WFI) state.

5. The Power Policy Unit (PPU) sees the WFI state and powers down.

------- Note -------
The SCP waits for this sequence to complete.

6. The SCP powers down the Cortex-A53, Cortex-A57, VSYS, and Mali-T624 GPU.

7. The SCP signals to the MCC, using the Power Management IC (PMIC), Ready for Shutdown.

8. The MCC applies CB_nPOR and disables the board clocks and the PMIC.

------- Note -------
The CB_nPOR signal drives the nPORESET signal inside the Juno Arm Development Platform SoC.

9. The V2M-Juno motherboard is in the standby-state until a press of the On/Off/Soft Reset button initiates the powerup and configuration sequence.

3.2.4 Sleep-state sequence

The sleep-state is a low-power mode of the Juno Arm Development Platform SoC that preserves operating data and the application code state. The sleep-mode sequence takes the Juno Arm Development Platform SoC from the operating-state to the sleep-state.

The operating-state to sleep-state sequence is:

1. A short press of the On/OffSoft Reset button, less than two seconds.

------- Warning -------
Pressing and holding the On/Off/Soft Reset button for more than two seconds initiates the powerdown sequence putting the V2M-Juno motherboard into the standby-state. Putting the board into the standby-state might result in loss of data.

------- Note -------
The SCP waits for this sequence to complete.

2. The System Control Processor (SCP) sends the Message Handling Unit (MHU) sleep command to the application cluster, that is, either the Cortex-A57 or Cortex-A53.

3. The application cluster goes through its cleanup and shutdown sequence. The application cluster goes to the Wait for Interrupt (WFI) state.

4. The Power Policy Unit (PPU) sees the WFI state and powers down.

------- Note -------
The SCP waits for this sequence to complete.

5. The SCP powers down the Cortex-A53, Cortex-A57, VSYS, and Mali-T624 GPU.

6. The SCP maintains on-chip RAM and secure RAM data. This data is available when the Juno Arm Development Platform SoC returns to the operating-state.

7. The Juno Arm Development Platform SoC is in the sleep-state. A short press, less than two seconds, of the On/Off/Soft Reset button initiates the wake-up sequence and returns it to the operating-state.

3.2.5 Wake-up sequence

The wake-up sequence takes the Juno Arm Development Platform SoC from the sleep-state to the operating-state. Application software resumes operation from the previous operating point with all data restored.
The sleep-state to operating-state sequence is:

1. A short press of the On/Off/Soft Reset button, less than two seconds.
2. The System Control Processor (SCP) enables the Cortex-A57, Cortex-A53, VSYS, and the Mali-T624 GPU.
3. The SCP performs basic Juno Arm Development Platform SoC setup, PLLs, internal clocks, and test chip peripherals.
4. The SCP writes state data to on-chip secure RAM so that the application cluster, that is, either the Cortex-A57 or Cortex-A53, resumes in the correct state and does not boot up from standby.
5. The SCP releases the Power Policy Unit (PPU) to start the application cluster boot sequence.
6. The application code resumes from the point when the Juno Arm Development Platform SoC went into the sleep-state.
3.3 Configuration files

This section describes the V2M-Juno motherboard configuration files in the configuration microSD card that control the board powerup and configuration process.

This section contains the following subsections:
• 3.3.1 Overview of configuration files and microSD card directory structure on page 3-69.
• 3.3.2 config.txt generic motherboard configuration file on page 3-71.
• 3.3.3 Contents of the MB directory on page 3-71.
• 3.3.4 Contents of the SITE1 directory on page 3-72.
• 3.3.5 Contents of the SITE2 directory on page 3-73.
• 3.3.6 Contents of the SOFTWARE directory on page 3-73.

3.3.1 Overview of configuration files and microSD card directory structure

Because the V2M-Juno motherboard configuration microSD card is non-volatile flash memory, it is only necessary to load new configuration files if you change the system configuration. The configuration microSD card contains default configuration files.

If you connect a workstation to the configuration USB port or configuration Ethernet port, the configuration memory device, that is, the configuration microSD card, appears as a USB Mass Storage Device (USBMSD) and you can add, edit, or delete files.

You can use a standard text editor that produces DOS line endings to read and edit the board configuration files.

The following figure shows a typical example of the directory structure in the microSD card memory.

Caution

Files names and directory names are in 8.3 format:
• File names that you generate must be in lower case.
• Directory names must be in upper case.
• All configuration files must end in DOS line endings, 0x0D/0x0A.
The directory structure and file name format ensure that each image is matched to the correct target device defined in the V2M-Juno motherboard configuration EEPROM and in the daughterboard EEPROM.

config.txt

Generic configuration file for all motherboards. This file applies to all Versatile Express motherboards including the V2M-Juno motherboard.

MB directory

Contains subdirectories for any motherboard variants present in the system. The subdirectory names match the HBI codes for the specific motherboard variants. The files in these directories contain clock, register, and other settings for the boards.

SITE1 directory

Contains configuration files that relate to the Juno Arm Development Platform SoC and to external memory that the Juno Arm Development Platform SoC can access.

SITE2 directory

Contains configuration files for any LogicTile daughterboard that you fit to the V2M-Juno motherboard. The subdirectory names match the HBI codes for all possible daughterboards. The files in these directories contain clock, register, and other settings for the daughterboards.

Figure 3-3 Example configuration microSD card directory structure

The directory structure and file name format ensure that each image is matched to the correct target device defined in the V2M-Juno motherboard configuration EEPROM and in the daughterboard EEPROM.

config.txt

Generic configuration file for all motherboards. This file applies to all Versatile Express motherboards including the V2M-Juno motherboard.

MB directory

Contains subdirectories for any motherboard variants present in the system. The subdirectory names match the HBI codes for the specific motherboard variants. The files in these directories contain clock, register, and other settings for the boards.

SITE1 directory

Contains configuration files that relate to the Juno Arm Development Platform SoC and to external memory that the Juno Arm Development Platform SoC can access.

SITE2 directory

Contains configuration files for any LogicTile daughterboard that you fit to the V2M-Juno motherboard. The subdirectory names match the HBI codes for all possible daughterboards. The files in these directories contain clock, register, and other settings for the daughterboards.
SOFTWARE directory

Contains application files that the MCC can load into SRAM or NOR flash. The IMAGES section in the config.txt file defines the file that the MCC loads.

Related information
A.2 Configuration 10Mbps Ethernet and dual-USB connector on page Appx-A-124
A.5 Configuration USB connector on page Appx-A-127
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17

3.3.2 config.txt generic motherboard configuration file

You can use the V2M-Juno motherboard configuration USB port or configuration Ethernet port to update the generic Versatile Express configuration file config.txt from your workstation to the root directory of the microSD card.

The following example shows a typical config.txt configuration file in the root directory of the configuration microSD card.

---------- Note ----------

• Colons (:) indicate the end of commands and must be separated by a space character (0x20) from the value fields.
• Semicolons (;) indicate comments.
• ASSERTNPOR must always have the value TRUE.

TITLE: Versatile Express V2M-Juno configuration file

[CONFIGURATION]
AUTORUN: FALSE ;Auto Run from power on
TESTMENU: FALSE ;MB Peripheral Test Menu
UPDATE: FALSE ;Force JTAG and FPGA update to DBs
VERIFY: FALSE ;Force FPGA verify to DBs
DVIMODE: VGA ;VGA or SVGA or XGA or SXGA or UXGA
MBLOG: FALSE ;LOG MB MICRO in run mode FALSE/UART0/UART1
DBLOG: FALSE ;LOG DB MICRO in run mode FALSE/UART1
;(when MBLOG is not UART1)

USERSWITCH: 00000000 ;Userswitch[7:0] in binary
CONFSWITCH: 00000000 ;Configuration Switch[7:0] in binary
ASSERTNPOR: TRUE ;External resets assert nPOR
WDTRESET: NONE ;Watchdog reset options NONE/RESETMB/RESETDB
PCIMASTER: DB1 ;Port Failover DB1/SL3
MASTERSITE: DB1 ;Boot Master DB1/SL3
REMOTE: NONE ;Selects remote command options NONE/USB/FTP
SMCMACADDRESS: 0xFFFFFFFFFFFF ;MAC Address for SMC Ethernet
MCCMACADDRESS: 0xFFFFFFFFFFFF ;MAC Address for MCC configuration Ethernet
HOSTNAME: V2M_JUNO_01 ;Host name for FTP [15 characters max]

See 2.13 UART interface on page 2-53 for information on using the MBLOG and DBLOG options to configure the UART interface.

3.3.3 Contents of the MB directory

The MB directory contains files that relate to the MCC and to other components on the V2M-Juno motherboard, but not the Juno Arm Development Platform SoC. The MB directory contains a configuration HBI subdirectory that matches the HBI code of the V2M-Juno motherboard.

The HBI subdirectory contains:

• A board.txt file. This file defines the BIOS image that the MCC loads during configuration.
• A file of the form mbb_vxxx.ebf. This is the MCC BIOS image that the board.txt file defines.
• A file of the form `io_bxxx.bit`. This is the IOFPGA image file.
• A file of the form `pms_vxxx.bin`. This is a binary configuration file for the Power Management IC (PMIC) on the V2M-Juno motherboard.
• A `tapid.arm` file. This file contains JTAG ID codes for the V2M-Juno motherboard and LogicTile daughterboards.

The following example shows a typical V2M-Juno motherboard configuration `board.txt` file.

```
BOARD: HBI0262
TITLE: Motherboard configuration file

[MCCS]
MBBIOS mbb_v117.ebf ;MB BIOS IMAGE

[FPGAS]
MBIOFPGA: io_v114.bit ;MB IOFPGA

[PMIC]
MBPMIC: pms_v103.bin ;MB PMIC

[OSCCLKS]
TOTALOSCCLKS: 11
OSC0: 50.O ;OSC0 Juno SYSREFCLK (System clock)
OSC1: 50.O ;OSC1 Juno AONREFCLK (Always on)
OSC2: 50.O ;OSC2 Juno PXLREFCLK (HS pixel clock)
OSC3: 50.O ;OSC3 Juno PXCLKIN (LS pixel clock)
OSC4: 2.11 ;OSC4 Juno I2SCLK (Audio)
OSC5: 50.O ;OSC5 Juno SMCMCLK (Static memory)
OSC6: 50.O ;OSC6 Juno CAS3 REF_CLK (RSVD)
OSC7: 50.O ;OSC7 Juno CAS7 REF_CLK (RSVD)
OSC8: 50.O ;OSC8 Juno GPU REF_CLK (RSVD)
OSC9: 90.O ;OSC9 IOFPGA BOOT (RSVD)
OSC10: 24.O ;OSC10 IOFPGA UART (RSVD)
OSC11: 7.37 ;OSC11 Juno UARTCLK (UART clock)
```

Related information

2.5.1 Overview of clocks on page 2-30

3.3.4 Contents of the SITE1 directory

The SITE1 directory contains files that relate to the Juno Arm Development Platform SoC and to external memory on the V2M-Juno motherboard that the Juno Arm Development Platform SoC can access.

The SITE1 subdirectory contains an `HBI0262` subdirectory that matches the HBI code of the V2M-Juno motherboard. The `HBI0262` subdirectory contains the following files:

A board.txt file

Contains configuration information for the SCC registers in the Juno Arm Development Platform SoC.

An images.txt file

Defines the files that the MCC loads into external memory during configuration.

The following example shows a typical V2M-Juno motherboard `board.txt` file in the SITE1 directory that relates to the Juno SoC.

```
BOARD: HBI0262
TITLE: V2M-Juno DevChip Configuration File

[SCC REGISTERS]
TOTALSCCS: 7 ;Total Number of SCC registers
SCC: 0x100 0x801F1000 ;AS7 PLL Register 0 (800MHz)
SCC: 0x104 0x0000F100 ;AS7 PLL Register 1
SCC: 0x108 0x801B1000 ;AS3 PLL Register 0 (700MHz)
SCC: 0x10C 0x0000D100 ;AS3 PLL Register 1
SCC: 0x8F8 0x80EC0000 ;BL1 entry point
```

Caution

Arm reserves these registers. You must not write to them.
The following example shows a typical V2M-Juno motherboard images.txt file in the SITE1 directory that relates to the Juno SoC.

<table>
<thead>
<tr>
<th>TITLE: Versatile Express Images Configuration File</th>
</tr>
</thead>
<tbody>
<tr>
<td>[IMAGES]</td>
</tr>
<tr>
<td>TOTALIMAGES: 4</td>
</tr>
<tr>
<td>NOR0UPDATE: AUTO</td>
</tr>
<tr>
<td>NOR0ADDRESS: 0x00000000</td>
</tr>
<tr>
<td>NOR0FILE: SOFTWARE\fip.bin</td>
</tr>
<tr>
<td>NOR0LOAD: 0x00000000</td>
</tr>
<tr>
<td>NOR0ENTRY: 0x00000000</td>
</tr>
<tr>
<td>NOR1UPDATE: AUTO</td>
</tr>
<tr>
<td>NOR1ADDRESS: 0x03EC0000</td>
</tr>
<tr>
<td>NOR1FILE: SOFTWARE\bl1.bin</td>
</tr>
<tr>
<td>NOR1LOAD: 0x00000000</td>
</tr>
<tr>
<td>NOR1ENTRY: 0x00000000</td>
</tr>
<tr>
<td>NOR2UPDATE: AUTO</td>
</tr>
<tr>
<td>NOR2ADDRESS: 0x00500000</td>
</tr>
<tr>
<td>NOR2FILE: SOFTWARE\image</td>
</tr>
<tr>
<td>NOR2LOAD: 0x00000000</td>
</tr>
<tr>
<td>NOR2ENTRY: 0x00000000</td>
</tr>
<tr>
<td>NOR3UPDATE: AUTO</td>
</tr>
<tr>
<td>NOR3ADDRESS: 0x00F00000</td>
</tr>
<tr>
<td>NOR3FILE: SOFTWARE\juno.dtb</td>
</tr>
<tr>
<td>NOR3LOAD: 0x00000000</td>
</tr>
<tr>
<td>NOR3ENTRY: 0x00000000</td>
</tr>
</tbody>
</table>

3.3.5 Contents of the SITE2 directory

The SITE2 directory contains configuration files for LogicTile daughterboards that you can fit in the V2M-Juno motherboard daughterboard site.

See the Technical Reference Manual for your fitted daughterboard for information about the daughterboard files in the SITE2 directory.

3.3.6 Contents of the SOFTWARE directory

The SOFTWARE directory contains applications that you can load into external FLASH memory.

You can create new applications and load them into the FLASH on the V2M-Juno motherboard. Application images are typically boot images or demo programs.

Typical applications in this directory are:
- bl1.bin Arm Boot ROM.
- fip.bin Firmware Image Package that contains subsequent firmware images.
- Image Linux kernel.
- juno.dtb Juno device tree.
3.4 Configuration switches

The V2M-Juno motherboard provides two configuration switches, SW0 and SW1. This section describes the use of those switches.

This section contains the following subsections:

• 3.4.1 Use of configuration switches on page 3-74.
• 3.4.2 Remote UART configuration on page 3-74.

3.4.1 Use of configuration switches

The switches SW0 and SW1 affect board initialization.

The config.txt configuration file contains USERSWITCH and CFGSWITCH entries for the virtual switch register bits SYS_SW[7:0] and SYS_CFGSW[7:0] in the IOFPGA. Configuration switch SW0 also modifies SYS_SW[0]. The configuration system does not use these virtual switches for system configuration, but they are available for the user application and boot monitor.

See the following for more information:

• 4.3.3 SYS_SW Register on page 4-90.
• 4.3.7 SYS_CFGSW Register on page 4-93.

Note

• The default setting for configuration switches SW0 and SW1 is OFF.
• If the switches are in the up position, they are OFF.

Bootscript switch SW0

SW0 in the ON position, or the config.txt entry for USERSWITCH[0] being set to 1, sets SYS_SW[0] to 0b1.

If SYS_SW[0] is set to 0b1, the boot loader runs the OS automatically at powerup. If the OS software supports this feature, under UEFI, this boot process starts automatically irrespective of the switch setting.

SYS_SW[30] indicates the value of physical configuration switch SW0.

A user application can also modify SYS_SW[0] but the change does not take effect until the next reset.

Remote UART control switch SW1

SW1 in the ON position enables UART control and the flow-control signals on UART0 to control the standby-state. This setting is typically used on test farms.

SYS_SW[31] indicates the value of physical configuration switch SW1.

See 1.3 Location of components on the V2M-Juno motherboard on page 1-15 and 1.4 Connectors on front and rear panels on page 1-17 for the location of the configuration switches.

3.4.2 Remote UART configuration

If SW1 is ON to enable remote UART control:

• An external controller can toggle UART0 SER0_DSR, pin 6, HIGH for 100ms to put the V2M-Juno motherboard into standby mode. This is equivalent to pressing the Hardware Reset button. Power cycling the board also places the system in standby-state.
Note

The duration of the SER0_DSR HIGH pulse must be greater than or equal to 100ms.

- An external controller can remotely select whether the MCC or the system application uses UART0 in run-mode. This overrides the confix.txt entry for MBLOG and eliminates the requirement to use the second serial port on UART1.

Set UART0 SER0_CTS, pin 8, LOW to select system mode, or set it HIGH to select MCC mode.

Remote UART0 control requires a full null modem cable that Arm supplies with the V2M-Juno motherboard. The following figure shows the cable wiring.

![Modem cable wiring diagram](image)

Figure 3-4 Modem cable wiring

You can control the SER0_DSR and SER0_CTS signals using control logic on the host computer.

Alternatively, you can use a custom terminal program such as Arm VETerminal.exe that Arm provides on the V2M-Juno motherboard DVD. This program integrates the terminal output and control buttons into a single application.
3.5 Use of reset push buttons

This section describes the use and functions of the reset push buttons on the V2M-Juno motherboard.

This section contains the following subsections:
• 3.5.1 Use of ON/OFF/Soft Reset button on page 3-76.
• 3.5.2 Use of Hardware Reset button on page 3-76.

3.5.1 Use of ON/OFF/Soft Reset button

This push button enables you to perform a software reset of the system.

You initiate a software reset of the system by briefly pressing the ON/OFF/Soft Reset button during runtime. The MCC performs a software reset of the Juno Arm Development Platform SoC and resets the devices on the board.

The software reset sequence is as follows:
1. Briefly press the ON/OFF/Soft Reset button.
 — Caution ——
 If you press and hold the ON/OFF/Soft Reset button for more than two seconds, the system enters the standby-state in the same way as pressing the Hardware Reset button.
 —— Note ——
 • The MCC does not read the configuration files or perform a board reconfiguration as a result of a software reset.
 • The CB_nPOR signal drives the nPORESET signal inside the Juno Arm Development Platform SoC.

2. The MCC asserts the CB_nRST reset signal.
3. The MCC releases CB_nPOR.
4. The MCC releases CB_nRST.
5. The V2M-Juno motherboard enters the operating-state.

3.5.2 Use of Hardware Reset button

This push button enables you to perform a hardware reset of the system.

You can change the operation of the board from the operating-state to the standby-state by briefly pressing the Hardware Reset button. This switches off the power to the board and resets the system to the default values.

If you then press the ON/OFF/Soft Reset push button, the system performs a full configuration and enters the operating-state.

Related information
2.6.1 Reset push buttons on page 2-37
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
3.6 Command-line interface

This section describes the V2M-Juno motherboard command-line interface that supports system command-line input to the MCC and to the Daughterboard Configuration Controller on the LogicTile daughterboard.

This section contains the following subsections:

- 3.6.1 Overview of the V2M-Juno motherboard MCC command-line interface on page 3-77.
- 3.6.2 Overview of the LogicTile daughterboard command-line interface on page 3-77.
- 3.6.3 MCC main command menu on page 3-77.
- 3.6.4 MCC debug menu on page 3-78.
- 3.6.5 EEPROM menu on page 3-78.

3.6.1 Overview of the V2M-Juno motherboard MCC command-line interface

You must connect a workstation to UART0 to enter MCC system commands.

You must set the MBLOG option in the config.txt file to TRUE to enter MCC system commands at the UART0 port.

The workstation settings must be:
- 115.2kBaud.
- 8N1 representing 8 data bits, no parity, one stop bit.
- No hardware or software flow control.

3.6.2 Overview of the LogicTile daughterboard command-line interface

You must connect a workstation to UART1 to input system commands to the Daughterboard Configuration Controller on the LogicTile daughterboard.

You must set the DBLOG option in the config.txt file to TRUE to enter LogicTile daughterboard system commands at the UART1 port. The setting takes effect after the next reset.

The workstation settings must be:
- 115.2kBaud.
- 8N1 representing 8 data bits, no parity, one stop bit.
- No hardware or software flow control.

See the appropriate Technical Reference Manual for your LogicTile daughterboard for information on the daughterboard command-line interface.

3.6.3 MCC main command menu

This section shows the V2M-Juno motherboard MCC main menu system commands.

The following table shows the MCC main menu system commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>CAP filename [/A]</code></td>
<td>Capture serial data to the file <code>filename</code>. Use the <code>/A</code> option to append data to an existing file.</td>
</tr>
<tr>
<td><code>COPY input_filename_1 [input_filename_2] output_filename</code></td>
<td>Copy a file <code>input_filename_1</code> to <code>output_filename</code>. Option <code>input_filename_2</code> merges <code>input_filename_1</code> and <code>input_filename_2</code>.</td>
</tr>
<tr>
<td><code>DEBUG</code></td>
<td>Change to the debug menu.</td>
</tr>
<tr>
<td><code>DEL filename</code></td>
<td>Delete file <code>filename</code>.</td>
</tr>
</tbody>
</table>
Table 3-1 V2M-Juno motherboard MCC main command menu (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIR [mask]</td>
<td>Display a list of files in the directory.</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Change to the EEPROM menu.</td>
</tr>
<tr>
<td>FILL filename [nnnn]</td>
<td>Create a file <code>filename</code> filled with text. <code>nnnn</code> specifies the number of lines to create. The default is 1000.</td>
</tr>
<tr>
<td>FTP_ON</td>
<td>Enable MCC FTP Server.</td>
</tr>
<tr>
<td>FTP_OFF</td>
<td>Disable MCC FTP Server.</td>
</tr>
<tr>
<td>HELP or ?</td>
<td>Display this help.</td>
</tr>
<tr>
<td>REBOOT</td>
<td>Cycle system power and reboot.</td>
</tr>
<tr>
<td>RECAL</td>
<td>Calibrate the PVT sensor.</td>
</tr>
<tr>
<td>REN filename_1 filename_2</td>
<td>Rename a file from <code>filename_1</code> to <code>filename_2</code>.</td>
</tr>
<tr>
<td>RESET</td>
<td>Reset the V2M-Juno motherboard board using the <code>nRST</code> reset signal.</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>Shutdown the power supply but leave the MCC running. The board returns to Standby mode.</td>
</tr>
<tr>
<td>TYPE filename</td>
<td>Display the contents of text file <code>filename</code>.</td>
</tr>
<tr>
<td>USB_ON</td>
<td>Enable MCC USB configuration port.</td>
</tr>
<tr>
<td>USB_OFF</td>
<td>Disable MCC USB configuration port.</td>
</tr>
</tbody>
</table>

3.6.4 MCC debug menu

Enter `DEBUG` at the main menu to switch to the debug submenu. The debug submenu is valid only in operating-state.

The following table shows the debug commands.

Table 3-2 V2M-Juno motherboard MCC debug command menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>Display current date.</td>
</tr>
<tr>
<td>DEBUG [0</td>
<td>1]</td>
</tr>
<tr>
<td></td>
<td>• 0b0 Disable.</td>
</tr>
<tr>
<td></td>
<td>• 0b1 Enable.</td>
</tr>
<tr>
<td>DEPOSIT address data</td>
<td>Write word to system memory address.</td>
</tr>
<tr>
<td>EXAM address [nnnn]</td>
<td>Examine system memory address at <code>address.nnnn</code> is number, in Hex, of words to read.</td>
</tr>
<tr>
<td>EXIT or QUIT</td>
<td>Return to main menu.</td>
</tr>
<tr>
<td>HELP or ?</td>
<td>Display this help.</td>
</tr>
<tr>
<td>TIME</td>
<td>Display current time.</td>
</tr>
</tbody>
</table>

3.6.5 EEPROM menu

Enter `EEPROM` at the main menu to switch to the EEPROM submenu. The contents of the V2M-Juno motherboard EEPROMs identify the specific board variant and might contain data to load to the other devices on the board.
The following table shows the EEPROM commands.

--- Caution ---
You must not modify the EEPROM settings. The settings are programmed with unique values during production and changing them might compromise the function of the board.

The following table shows the EEPROM commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG 0 filename</td>
<td>Write configuration file to EEPROM.</td>
</tr>
<tr>
<td>EXIT or QUIT</td>
<td>Return to main menu.</td>
</tr>
<tr>
<td>ERASECON [0]</td>
<td>Erase configuration section of EEPROM.</td>
</tr>
<tr>
<td>ERASEDEV [0]</td>
<td>Erase device section of EEPROM.</td>
</tr>
<tr>
<td>ERASE RANGE [0] start end</td>
<td>Erase EEPROM between start and end.</td>
</tr>
<tr>
<td>ERASIMAGE image_id</td>
<td>Erase image, named image_id, stored in Motherboard EEPROM.</td>
</tr>
<tr>
<td>ERASEIMAGES</td>
<td>Erase images stored in Motherboard EEPROM.</td>
</tr>
<tr>
<td>HELP or ?</td>
<td>Display this help.</td>
</tr>
<tr>
<td>READIMAGES</td>
<td>Read images stored in Motherboard EEPROM.</td>
</tr>
<tr>
<td>READCF [0]</td>
<td>Read configuration EEPROM.</td>
</tr>
<tr>
<td>READ RANGE [0] start end</td>
<td>Read EEPROM between start and end.</td>
</tr>
</tbody>
</table>
Chapter 4
Programmers Model

This chapter describes the programmers model of the Versatile Express V2M-Juno motherboard.

It contains the following sections:

- 4.1 About this programmers model on page 4-81.
- 4.2 V2M-Juno motherboard memory maps on page 4-82.
- 4.3 APB system registers on page 4-88.
- 4.4 APB system configuration registers on page 4-100.
- 4.5 APB energy meter registers on page 4-104.
4.1 About this programmers model

The Juno Arm Development Platform SoC programmers model derives from the Armv8 compute subsystem architecture that supports Armv8 AArch64 software and tooling.

The following information applies to the SCC registers and to the system configuration, SYS_CFG, registers:

- The base address is not fixed, and can be different for any particular system implementation. The offset of each register from the base address is fixed.
- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in unpredictable behavior.
- Unless otherwise stated in the accompanying text:
 - Do not modify undefined register bits.
 - Ignore undefined register bits on reads.
 - All register bits are reset to a logic 0 by a system or powerup reset.

4.3.1 APB system register summary on page 4-88, 4.4.1 APB system configuration register summary on page 4-100, and 4.5.1 APB energy register summary on page 4-104 describe register access type as follows:

RW Read and write.

RO Read-only.

WO Write-only.
4.2 V2M-Juno motherboard memory maps

The application processors in the Juno SoC on the V2M-Juno motherboard see a 40-bit memory map.

This section contains the following subsections:

- 4.2.1 Juno SoC top-level application and SMC interface memory maps on page 4-82.
- 4.2.2 IOFPGA system peripherals memory map on page 4-84.
- 4.2.3 DDR3L memory map on page 4-86.
- 4.2.4 Additional Juno Arm® Development Platform SoC memory maps on page 4-87.

4.2.1 Juno SoC top-level application and SMC interface memory maps

The Juno SoC SMC occupies the expansion AXI memory at \(0x00080000\) and supports chip-selects that access components, systems, and memory on the V2M-Juno motherboard. The security status is exported security.

Chip select CS3 inside the SMC accesses the low-bandwidth system peripherals inside the IOFPGA and is at \(0x001c0000\).

The following figure shows the mapping of the SMC memory map into the Juno SoC top-level application memory map. It shows the SMC memory map of the production V2M-Juno motherboard.
Figure 4-1 Juno SoC top-level application and SMC interface memory maps

--- Note ---

- The region \(0x007FB00000\) to \(0x007FFFFFF\), Juno r1 SoC peripherals, contains some Reserved memory space. See the *Juno Arm Development Platform SoC Technical Reference Manual (Revision r0p0)* for details of this part of the memory map.
- Expansion AXI over Thin Links provides a 256MB window.

The following table shows the SMC memory map of the production V2M-Juno motherboard.

<table>
<thead>
<tr>
<th>Address range</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0x080000000) - (0x0BFFFFFF)</td>
<td>64MB</td>
<td>CS0-Motherboard NOR flash.</td>
</tr>
<tr>
<td>(0x0C0000000) - (0x13FFFFFF)</td>
<td>128MB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>(0x140000000) - (0x1403FFFF)</td>
<td>256KB</td>
<td>CS1-256KB internal IOFPGA block RAM.</td>
</tr>
<tr>
<td>(0x140400000) - (0x17FFFFFF)</td>
<td>65535.75KB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
</tbody>
</table>
Table 4-1 SMC interface memory map of production V2M-Juno motherboard (continued)

<table>
<thead>
<tr>
<th>Address range</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x18000000 - 0x1BFFFFFF</td>
<td>64MB</td>
<td>CS2-10/100 Ethernet.</td>
</tr>
<tr>
<td>0x1C000000 - 0x1EFFFFFF</td>
<td>48MB</td>
<td>CS3-IOFPGA peripherals.</td>
</tr>
</tbody>
</table>

See the Juno Arm® Development Platform SoC Technical Reference Manual (Revision r0p0) for more information on the top-level memory map of the Juno Arm Development Platform SoC.

Note

The prototype version of the V2M-Juno motherboard provides chip select, CS5 at 0x0010000000, that supports SMC USB 2.0 access. See B.4 SMC memory map of the prototype V2M-Juno motherboard on page Appx-B-140. The production board does not provide CS5.

4.2.2 IOFPGA system peripherals memory map

This section describes the memory map of the IOFPGA system peripherals that is at chip select CS3 in the SMC interface.

The chip select CS3 is at 0x001C000000 and provides access to low-bandwidth system peripherals in the IOFPGA that the Juno SoC does not provide.

The following figure shows the mapping of the IOFPGA system peripherals memory map into the SMC memory map.
The following table shows the IOFPGA system peripherals memory map.
Table 4-2 V2M-Juno motherboard IOFPGA system peripherals memory map

<table>
<thead>
<tr>
<th>Address range</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1C000000 - 0x1C00FFFF</td>
<td>64KB</td>
<td>CS3-DAP ROM.</td>
</tr>
<tr>
<td>0x1C010000 - 0x1C01FFFF</td>
<td>64KB</td>
<td>CS3-APB registers. User LEDs.</td>
</tr>
<tr>
<td>0x1C020000 - 0x1C02FFFF</td>
<td>64KB</td>
<td>CS3-SP810 System controller.</td>
</tr>
<tr>
<td>0x1C030000 - 0x1C04FFFF</td>
<td>128KB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>0x1C050000 - 0x1C05FFFF</td>
<td>64KB</td>
<td>CS3-PL180 User microSD card.</td>
</tr>
<tr>
<td>0x1C070000 - 0x1C07FFFF</td>
<td>64KB</td>
<td>CS3-PL050 (1) KMI interface 1.</td>
</tr>
<tr>
<td>0x1C080000 - 0x1C0EFFFF</td>
<td>448KB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>0x1C0F0000 - 0x1C1FFFFF</td>
<td>64KB</td>
<td>SP805 System watchdog.</td>
</tr>
<tr>
<td>0x1C100000 - 0x1C1FFFFF</td>
<td>64KB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>0x1C110000 - 0x1C11FFFFF</td>
<td>64KB</td>
<td>CS3-SP804 Dual-timer (0/1).</td>
</tr>
<tr>
<td>0x1C120000 - 0x1C12FFFFF</td>
<td>64KB</td>
<td>CS3-SP804 Dual-timer (2/3).</td>
</tr>
<tr>
<td>0x1C140000 - 0x1C15FFFFF</td>
<td>128KB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>0x1C1D0000 - 0x1C1DFFFFF</td>
<td>64KB</td>
<td>CS3-PL061 GPIO 0 Additional user key entry.</td>
</tr>
<tr>
<td>0x1C1E0000 - 0x1C1EFFFFF</td>
<td>64KB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>0x1C1F0000 - 0x1EFFFFFFF</td>
<td>46MB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
</tbody>
</table>

Related information
2.8 IOFPGA on page 2-43

4.2.3 DDR3L memory map

The DDR3L memory map occupies two parts of the Juno SoC top-level application map, 2GB at 0x0080000000, and 6GB at 0x0880000000. The security is programmable access security.

The following figure shows the mapping of the DDR3L memory map into the Juno SoC top-level application memory map.
Table 4-3 V2M-Juno motherboard DDR3L memory map

<table>
<thead>
<tr>
<th>Address range</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0080000000 - 0x0090000000</td>
<td>2GB</td>
<td>DDR3L</td>
</tr>
<tr>
<td>0x0080000000 - 0x0090000000</td>
<td>2GB</td>
<td>DDR3L</td>
</tr>
</tbody>
</table>

4.2.4 Additional Juno Arm® Development Platform SoC memory maps

The Juno Arm Development Platform SoC contains additional memory maps.

See the *Juno Arm® Development Platform SoC Technical Reference Manual (Revision r0p0)* for information on other areas of the top-level memory map of the Juno Arm Development Platform SoC.
4.3 APB system registers

This section describes the APB system registers in the IOFPGA.

This section contains the following subsections:
- 4.3.1 APB system register summary on page 4-88.
- 4.3.2 SYS_ID Register on page 4-89.
- 4.3.3 SYS_SW Register on page 4-90.
- 4.3.4 SYS_LED Register on page 4-91.
- 4.3.5 SYS_100HZ Register on page 4-92.
- 4.3.6 SYS_FLAGS Register on page 4-92.
- 4.3.7 SYS_CFGSW Register on page 4-93.
- 4.3.8 SYS_24MHZ Register on page 4-94.
- 4.3.9 SYS_MISC Register on page 4-94.
- 4.3.10 SYS_PROC_ID0 Register on page 4-95.
- 4.3.11 SYS_PROC_ID1 Register on page 4-96.
- 4.3.12 SYS_FAN_SPEED Register on page 4-97.
- 4.3.13 SP810_CTRL Register on page 4-98.

4.3.1 APB system register summary

This section summarizes the characteristics of the V2M-Juno motherboard APB system registers in the IOFPGA.

The base memory address of the APB system registers is 0x1C010000. The following table shows the registers in address offset order from the base memory address.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Reset</th>
<th>Width</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>SYS_ID</td>
<td>RO</td>
<td>0xFFFFFFXX</td>
<td>32</td>
<td>See 4.3.2 SYS_ID Register on page 4-89.</td>
</tr>
<tr>
<td>0x0004</td>
<td>SYS_SW</td>
<td>RO/RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.3.3 SYS_SW Register on page 4-90.</td>
</tr>
<tr>
<td>0x0008</td>
<td>SYS_LED</td>
<td>RO/RW</td>
<td>0x000000XX</td>
<td>32</td>
<td>See 4.3.4 SYS_LED Register on page 4-91.</td>
</tr>
<tr>
<td>0x0024</td>
<td>SYS_100HZ</td>
<td>RO/RW</td>
<td>0xFFFFFFXX</td>
<td>32</td>
<td>See 4.3.5 SYS_100HZ Register on page 4-92.</td>
</tr>
<tr>
<td>0x0030</td>
<td>SYS_FLAGS</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.3.6 SYS_FLAGS Register on page 4-92.</td>
</tr>
<tr>
<td>0x0030</td>
<td>SYS_FLAGSSET</td>
<td>WO</td>
<td>-</td>
<td>32</td>
<td>See 4.3.6 SYS_FLAGS Register on page 4-92.</td>
</tr>
<tr>
<td>0x0034</td>
<td>SYS_FLAGSCLR</td>
<td>WO</td>
<td>-</td>
<td>32</td>
<td>See 4.3.6 SYS_FLAGS Register on page 4-92.</td>
</tr>
<tr>
<td>0x0038</td>
<td>SYS_NVFLAGS</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.3.6 SYS_FLAGS Register on page 4-92.</td>
</tr>
<tr>
<td>0x0038</td>
<td>SYS_NVFLAGSSET</td>
<td>WO</td>
<td>-</td>
<td>32</td>
<td>See 4.3.6 SYS_FLAGS Register on page 4-92.</td>
</tr>
</tbody>
</table>
Table 4-4 V2M-Juno motherboard APB system register summary (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Reset</th>
<th>Width</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x003C</td>
<td>SYS_NVFLAGSCLR</td>
<td>WO</td>
<td>-</td>
<td>32</td>
<td>See 4.3.6 SYS_FLAG Registers on page 4-92.</td>
</tr>
<tr>
<td>0x0058</td>
<td>SYS_CFGSW</td>
<td>RO/RW</td>
<td>0x000000XX</td>
<td>32</td>
<td>See 4.3.7 SYS_CFGSW Register on page 4-93.</td>
</tr>
<tr>
<td>0x005C</td>
<td>SYS_24MHZ</td>
<td>RO</td>
<td>0xFFFFFFFF</td>
<td>32</td>
<td>See 4.3.8 SYS_24MHZ Register on page 4-94.</td>
</tr>
<tr>
<td>0x0060</td>
<td>SYS_MISC</td>
<td>RW/RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.3.9 SYS_MISC Register on page 4-94.</td>
</tr>
<tr>
<td>0x0084</td>
<td>SYS_PROC_ID0</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.3.10 SYS_PROC_ID0 Register on page 4-95.</td>
</tr>
<tr>
<td>0x0088</td>
<td>SYS_PROC_ID1</td>
<td>RW</td>
<td>0x000000XX</td>
<td>32</td>
<td>See 4.3.11 SYS_PROC_ID1 Register on page 4-96.</td>
</tr>
<tr>
<td>0x0120</td>
<td>SYS_FAN_SPEED</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.3.12 SYS_FAN_SPEED Register on page 4-97.</td>
</tr>
</tbody>
</table>

The base memory address of the SP810 system control register is 0x1C020000. The following table shows the SP810 system control register.

Table 4-5 V2M-Juno motherboard SP810 system control register

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Reset</th>
<th>Width</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>SP810_CTRL</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.3.13 SP810_CTRL Register on page 4-98.</td>
</tr>
</tbody>
</table>

4.3.2 SYS_ID Register

The SYS_ID Register characteristics are:

Purpose

Contains information about the V2M-Juno motherboard and the bus and image versions inside the IOFPGA.

Usage constraints

The SYS_ID Register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev</td>
<td>HBI</td>
<td>Build</td>
<td>Arch</td>
<td>FPGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 4-4 SYS_ID Register bit assignments

The following table shows the bit assignments.
Table 4-6 SYS_ID Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:28]</td>
<td>Rev</td>
<td>Board revision:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x0 - Rev A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x1 - Rev B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x2 - Rev C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x3 - Rev D.</td>
</tr>
<tr>
<td>[26:16]</td>
<td>HBI</td>
<td>HBI board number in BCD:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x262 = HBI0262.</td>
</tr>
<tr>
<td>[15:12]</td>
<td>Build</td>
<td>Build variant of board:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0xF - All builds.</td>
</tr>
<tr>
<td>[11:8]</td>
<td>Arch</td>
<td>IOFPGA bus architecture:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x4 = AHB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x5 = AXI.</td>
</tr>
<tr>
<td>[7:0]</td>
<td>FPGA</td>
<td>FPGA build in BCD. The actual value read depends on the FPGA build.</td>
</tr>
</tbody>
</table>

Related information

4.3.1 APB system register summary on page 4-88

4.3.3 SYS_SW Register

The SYS_SW Register characteristics are:

Purpose

Reads the USERSWITCH entry in the config.txt file. A bit set to 0b1 indicates that the switch is ON.

Usage constraints

Bits[31:8] are read-only. Bits[7:0] are read-write.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-5 SYS_SW Register bit assignments](image)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>31 30 29 28 27</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nUART0DSR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nUART0CTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW[0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW[1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Programmers Model
4.3 APB system registers
Table 4-7 SYS_SW Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31]</td>
<td>SW[1]</td>
<td>Indicates the value of the physical configuration switch SW[1]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 = ON.</td>
</tr>
<tr>
<td>[30]</td>
<td>SW[0]</td>
<td>Indicates the value of the physical configuration switch SW[0]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 = ON.</td>
</tr>
<tr>
<td>[29]</td>
<td>nUART0CTS</td>
<td>UART0 CTS signal.</td>
</tr>
<tr>
<td>[28]</td>
<td>nUART0DSR</td>
<td>UART0 DSR signal.</td>
</tr>
<tr>
<td>[27:8]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>these bits. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[7:0]</td>
<td>Soft user switch.</td>
<td>Application software can read these switch settings. If SYS[0] = 0b1, the Boot Monitor runs its bootscript at powerup.</td>
</tr>
</tbody>
</table>

Related information

4.3.1 APB system register summary on page 4-88

4.3.4 SYS_LED Register

The SYS_LED Register characteristics are:

Purpose

Controls the eight user LEDs on the V2M-Juno motherboard. All LEDs are turned OFF at reset. The Boot Monitor updates the LED value.

Usage constraints

There are no usage constraints.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-6 SYS_LED Register bit assignments](image)

The following table shows the bit assignments.

Table 4-8 SYS_LED Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:8]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[7:0]</td>
<td>LED[7:0]</td>
<td>Set or read the user LED states:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b0 = OFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 = ON.</td>
</tr>
</tbody>
</table>
4.3.5 SYS_100HZ Register

The SYS_100HZ Register characteristics are:

Purpose
A 32-bit counter that updates at 100Hz. The input clock derives from the 24MHz clock generator on the V2M-Juno motherboard.

Usage constraints
The SYS_100HZ Register is read-only.

Configurations
Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

```
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 0  |

100HZ_COUNT
```

Figure 4-7 SYS_100HZ Register bit assignments

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:0]</td>
<td>100HZ_COUNT</td>
<td>Contains the count, at 100Hz, since the last CB_nRST reset.</td>
</tr>
</tbody>
</table>

4.3.6 SYS_FLAG Registers

The Flag Register characteristics are:

Purpose
Provides two 32-bit registers SYS_FLAGS and SYS_NVFLAGS, that contain general-purpose flags. The application software defines the meaning of the flags. You use the SYS_FLAGSSET, SYS_FLAGSCLR, SYS_NVFLAGSSET, and SYS_NVFLAGSCLR registers to set and clear the bits in the Flag Registers.

Usage constraints
The SYS_FLAGS and SYS_NVFLAGS Registers are read-only.

The SYS_FLAGSSET, SYS_FLAGSCLR, SYS_NVFLAGSSET, and SYS_NVFLAGSCLR Registers are write-only.

Configurations
Available in all V2M-Juno motherboard configurations.

4 Programmers Model
4.3 APB system registers

100113_0000_07_en Copyright © 2014–2018 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
SYS_FLAGS Register

The SYS_FLAGS Register is one of the two flag registers. It contains the current states of the flags.

The SYS_FLAGS Register is volatile, that is, a reset signal from the reset push button resets the SYS_FLAGS Register.

You use the SYS_FLAGS_SET Register to set bits in the SYS_FLAGS Register. Write 0b1 to set the associated flag. Write 0b0 to leave the associated flag unchanged.

You use the SYS_FLAGS_CLR Register to clear bits in the SYS_FLAGS Register. Write 0b1 to clear the associated flag. Write 0b0 to leave the associated flag unchanged.

SYS_NVFLAGS Register

The SYS_NVFLAGS Register is one of the two flag registers. It contains the current states of the flags.

The SYS_NVFLAGS Register is non-volatile, that is, a reset signal from the reset push button does not reset the SYS_FLAGS Register. Only CB_nPOR resets the SYS_NVFLAGS Register.

You use the SYS_NVFLAGS_SET Register to set bits in the SYS_NVFLAGS Register. Write 0b1 to set the associated flag. Write 0b0 to leave the associated flag unchanged.

You use the SYS_NVFLAGS_CLR Register to clear bits in the SYS_NVFLAGS Register. Write 0b1 to clear the associated flag. Write 0b0 to leave the associated flag unchanged.

Related information

4.3.1 APB system register summary on page 4-88

4.3.7 SYS_CFGSW Register

The SYS_CFGSW Register characteristics are:

Purpose

Contains the value of CONFSWITCH in the config.txt file.

Usage constraints

There are no usage constraints.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![SYS_CFGSW Register bit assignments](image)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOFT_CONFIG_SWITCH</td>
</tr>
</tbody>
</table>
Table 4-10 SYS_CFGSW Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:8]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[7:0]</td>
<td>SOFT_CONFIG_SWITCH</td>
<td>Software applications can read these switch settings. The application software defines the meanings of the switch settings. The reset signals set these bits to the value of CONFSWITCH in the config.txt file. Note: The configuration system does not use the contents of this register for board configuration.</td>
</tr>
</tbody>
</table>

Related information

4.3.1 APB system register summary on page 4-88

4.3.8 SYS_24MHZ Register

The SYS_24MHZ Register characteristics are:

Purpose

A 32-bit counter that updates at 24MHz. The clock source is the 24MHz clock generator on the V2M-Juno motherboard.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-9 SYS_24MHZ Register bit assignments](image)

The following table shows the bit assignments.

Table 4-11 SYS_24MHZ Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:0]</td>
<td>24MHZ_COUNT</td>
<td>Contains the count, at 24MHz, from the last CB_nRST reset. CB_nRST sets the register to zero and then the count resumes.</td>
</tr>
</tbody>
</table>

Related information

4.3.1 APB system register summary on page 4-88

4.3.9 SYS_MISC Register

The SYS_MISC Register characteristics are:
Purpose

Denotes the presence or absence of the LogicTile Express daughterboard fitted in the daughterboard site.

Usage constraints

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-10 SYS_MISC Register bit assignments](image)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:20]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[19]</td>
<td>SWINT</td>
<td>Event output to daughterboard. See your daughterboard documentation for more information specific to your board.</td>
</tr>
<tr>
<td>[18:14]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [13] | nDBDET | Detect fitted daughterboard:
| | | • 0b0 Daughterboard not present.
| | | • 0b1 Daughterboard present. |
| [12:0] | - | Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits. |

Related information

4.3.1 APB system register summary on page 4-88

4.3.10 SYS_PROC_ID0 Register

The SYS_PROC_ID0 Register characteristics are:

Purpose

Identifies the active clusters in the Juno SoC.

Usage constraints

There are no usage constraints.

Configurations

Available in all V2M-Juno motherboard configurations.
The following figure shows the bit assignments.

![Figure 4-11 SYS_PROC_ID0 Register bit assignments](image1)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:24]</td>
<td>PROC_ID0</td>
<td>Denotes active clusters, Cortex-A57, Cortex-A53, and Mali-T624 GPU.</td>
</tr>
<tr>
<td>[23:0]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>

Related information

4.3.1 APB system register summary on page 4-88

4.3.11 SYS_PROC_ID1 Register

The SYS_PROC_ID1 Register characteristics are:

Purpose

Contains identification information about the FPGA image and the LogicTile Express daughterboard fitted to the V2M-Juno motherboard.

Usage constraints

There are no usage constraints.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-12 SYS_PROC_ID1 Register bit assignments](image2)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:24]</td>
<td>PROC_ID1</td>
<td>Denotes Application note or FPGA image in LogicTile daughterboard.</td>
</tr>
<tr>
<td>[23:20]</td>
<td>BOARD REVISION</td>
<td>Denotes the daughterboard revision:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x0 A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x1 B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x2 C.</td>
</tr>
</tbody>
</table>

This text is extracted from a technical document, focusing on the register bit assignments and their functions.
Table 4-14 SYS_PROC_ID1 Register bit assignments (continued)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[19:16]</td>
<td>BOARD VARIANT</td>
<td>Denotes the daughterboard variant:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x0 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x1 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x2 C</td>
</tr>
<tr>
<td>[15:12]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[11:0]</td>
<td>HBI BOARD NUMBER</td>
<td>Denotes the HBI board number of the LogicTile Express daughterboard:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x192 HBI0192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x217 HBI0217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0x247 HBI0247</td>
</tr>
</tbody>
</table>

Related information
4.3.1 APB system register summary on page 4-88

4.3.12 SYS_FAN_SPEED Register

The SYS_FAN_SPEED Register characteristics are:

Purpose
Contains a value that represents the fan operating speed. The MCC uses this value to moderate the speed of the cooling fan on the V2M-Juno motherboard.

Usage constraints
There are no usage constraints.

Configurations
Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-13 SYS_FAN_SPEED Register bit assignments]

The following table shows the bit assignments.
Table 4-15 SYS_FAN_SPEED Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31]</td>
<td>UPDATE_FAN_SPEED</td>
<td>Set this bit to 0b1 when updating the fan speed control bits [4:0].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The system clears this bit to 0b0 after updating the fan speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default value is 0b0.</td>
</tr>
<tr>
<td>[30:5]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>these bits. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[4:0]</td>
<td>FAN_SPEED</td>
<td>Indicates and controls the speed of the board cooling fan. The fan has 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>speed settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b00010 = minimum fan speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b11111 = maximum fan speed.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>0b00000 and 0b00001 are invalid settings. Do not use them.</td>
</tr>
</tbody>
</table>

Related information
4.3.1 APB system register summary on page 4-88

4.3.13 SP810_CTRL Register
The SP810_CTRL Register characteristics are:

Purpose
This register in the SP810 system controller selects the source clocks for the four SP804 timers in the IOFPGA.

Usage constraints
There are no usage constraints.

Configurations
Available in all V2M-Junio motherboard configurations.

The following figure shows the bit assignments.

```
Figure 4-14 SP810_CTRL Register bit assignments
```

The following table shows the bit assignments.
Table 4-16 SP810_CTRL Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:22]</td>
<td>Reserved.</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[21]</td>
<td>TimerEn3Sel</td>
<td>Selects the source clock for SP804 3 timer clock TIM_CLK[3]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b0 TIM_CLK[3] = 32kHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 TIM_CLK[3] = 1MHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The default is 0b0.</td>
</tr>
<tr>
<td>[20]</td>
<td>Reserved.</td>
<td>Reserved. If you write to this register, you must write zero to this bit. If you read this register, you must ignore this bit.</td>
</tr>
<tr>
<td>[19]</td>
<td>TimerEn2Sel</td>
<td>Selects the source clock for SP804 2 timer clock TIM_CLK[2]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b0 TIM_CLK[2] = 32kHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 TIM_CLK[2] = 1MHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The default is 0b0.</td>
</tr>
<tr>
<td>[18]</td>
<td>Reserved.</td>
<td>Reserved. If you write to this register, you must write zero to this bit. If you read this register, you must ignore this bit.</td>
</tr>
<tr>
<td>[17]</td>
<td>TimerEn1Sel</td>
<td>Selects the source clock for SP804 1 timer clock TIM_CLK[1]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b0 TIM_CLK[1] = 32kHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 TIM_CLK[1] = 1MHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The default is 0b0.</td>
</tr>
<tr>
<td>[16]</td>
<td>Reserved.</td>
<td>Reserved. If you write to this register, you must write zero to this bit. If you read this register, you must ignore this bit.</td>
</tr>
<tr>
<td>[15]</td>
<td>TimerEn0Sel</td>
<td>Selects the source clock for SP804 0 timer clock TIM_CLK[0]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b0 TIM_CLK[0] = 32kHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 TIM_CLK[0] = 1MHz.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The default is 0b0.</td>
</tr>
<tr>
<td>[14:0]</td>
<td>Reserved.</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>

Related information

4.3.1 APB system register summary on page 4-88
4.4 APB system configuration registers

This section describes the APB system configuration registers in the IOFPGA.

This section contains the following subsections:

- 4.4.1 APB system configuration register summary on page 4-100.
- 4.4.2 SYS_CFGDATA Register on page 4-100.
- 4.4.3 SYS_CFGCTRL Register on page 4-101.
- 4.4.4 SYS_CFGSTAT Register on page 4-102.

4.4.1 APB system configuration register summary

This section summarizes the characteristics of the V2M-Juno motherboard APB system configuration registers in the IOFPGA.

The base memory address of the APB system configuration registers is \(0x1C010000\). The following table shows the registers in address offset order from the base memory address.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Reset</th>
<th>Width</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00A0</td>
<td>SYS_CFGDATA</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.4.2 SYS_CFGDATA Register on page 4-100.</td>
</tr>
<tr>
<td>0x00A4</td>
<td>SYS_CFGCTRL</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.4.3 SYS_CFGCTRL Register on page 4-101.</td>
</tr>
<tr>
<td>0x00A8</td>
<td>SYS_CFGSTAT</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.4.4 SYS_CFGSTAT Register on page 4-102.</td>
</tr>
</tbody>
</table>

4.4.2 SYS_CFGDATA Register

The SYS_CFGDATA Register characteristics are:

Purpose

The application software in the Juno SoC writes data to the SYS_CFGDATA Register during a write operation. This data represents a value or function that the write operation sends to the addressed component, for example the frequency value of a clock generator.

The MCC or Daughterboard Configuration Controller writes return data to the SYS_CFGDATA Register during a read operation. This data represents a value or function that the read operation receives from the addressed component, for example the frequency value of a clock generator.

Usage constraints

There are no usage constraints.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![SYS_CFGDATA Register bit assignments](image-url)
The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:0]</td>
<td>SYS_CFGDATA</td>
<td>Write-data or read-data.</td>
</tr>
</tbody>
</table>

Related information

4.4.1 APB system configuration register summary on page 4-100

4.4.3 SYS_CFGCTRL Register

The SYS_CFGCTRL Register characteristics are:

Purpose

Controls write and read data transfer between the MCC and the SCC interface in the FPGA.

Usage constraints

There are no usage constraints.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-16 SYS_CFGCTRL Register bit assignments](image-url)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31]</td>
<td>Start</td>
<td>Writing to this bit generates an interrupt.</td>
</tr>
</tbody>
</table>
| [30] | nRead_Write | • 0b0 Read access.
• 0b1 Write access. |
| [29:26] | DCC | 4-bit number that selects the Daughterboard Configuration Controller on the daughterboard. For example:
• 0x0 selects DCC 0.
• 0x1 selects DCC 1. |
| [25:20] | Function | 6-bit value that defines the function of the daughterboard device that the transaction writes to or reads from. These bits support the following functions:
• 0b000001 Clock generator.
• 0b000100 Temperature.
• 0b000101 Daughterboard reset register.
• 0b000110 SCC configuration register.
• 0b001000 Shut down system.
• 0b001001 Reboot system. |
Table 4-19 SYSCFG_CTRL Register bit assignments (continued)

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[19:18]</td>
<td>-</td>
<td>Reserved. If you write to this register, you must write all zeros to these bits. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [17:16]| Site | Selects the board site location of the device to write to or read from. The V2M-Juno motherboard supports the following locations:
| | | • 0b00 V2M-Juno motherboard.
| | | • 0b01 LogicTile Express daughterboard site. |
| [15:12]| Position | Selects the position of the daughterboard in the stack. For example:
| | | • 0x1 Daughterboard at the lowest position in the stack next to the V2M-Juno motherboard.
| | | • 0x2 Daughterboard 2 in the stack. |
| [11:0] | Device | 12-bit number that denotes the device number. For example:
| | | • 0x00 selects device 0.
| | | • 0x01 selects device 1. |

Related information

4.4.1 APB system configuration register summary on page 4-100

4.4.4 SYS_CFGSTAT Register

The SYS_CFGSTAT Register characteristics are:

Purpose

Contains system configuration status information about read and write operations between the application software in the Juno SoC and a component on a fitted LogicTile Express daughterboard or the V2M-Juno motherboard.

Usage constraints

The SYS_CFGSTAT Register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-17 SYS_CFGSTAT Register bit assignments](image)

The following table shows the bit assignments.
Table 4-20 SYS_CFGSTAT Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:2]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[1]</td>
<td>Configuration error</td>
<td>A write to SYS_CFGCTRL clears this bit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b0 Configuration successful.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 Configuration failed.</td>
</tr>
<tr>
<td>[0]</td>
<td>Configuration complete</td>
<td>A write to SYS_CFGCTRL clears this bit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b0 Configuration not complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0b1 Configuration complete.</td>
</tr>
</tbody>
</table>

Related information
4.4.1 APB system configuration register summary on page 4-100
4.5 APB energy meter registers

The IOFPGA contains the APB energy meter registers.

This section contains the following subsections:

- 4.5.1 APB energy register summary on page 4-104.
- 4.5.2 SYS_I_SYS Register on page 4-106.
- 4.5.3 SYS_I_A57 Register on page 4-106.
- 4.5.4 SYS_I_A53 Register on page 4-107.
- 4.5.5 SYS_I_GPU Register on page 4-108.
- 4.5.6 SYS_V_SYS Register on page 4-108.
- 4.5.7 SYS_V_A57 Register on page 4-109.
- 4.5.8 SYS_V_A53 Register on page 4-110.
- 4.5.9 SYS_V_GPU Register on page 4-111.
- 4.5.10 SYS_POW_SYS Register on page 4-111.
- 4.5.11 SYS_POW_A57 Register on page 4-112.
- 4.5.12 SYS_POW_A53 Register on page 4-113.
- 4.5.13 SYS_POW_GPU Register on page 4-114.
- 4.5.14 SYS_ENM_SYS Register on page 4-114.
- 4.5.15 SYS_ENM_A57 Register on page 4-115.
- 4.5.16 SYS_ENM_A53 Register on page 4-116.
- 4.5.17 SYS_ENM_GPU Register on page 4-117.

4.5.1 APB energy register summary

This section summarizes the characteristics of the V2M-Juno motherboard APB energy meter registers in the IOFPGA.

The IOFPGA provides energy registers that measure the instantaneous current consumption, instantaneous voltage supplies, instantaneous power consumption, and cumulative energy consumption of the Cortex-A57 cluster, the Cortex-A53 cluster, the Mali-T624 GPU cluster, and the fabric of the Juno Arm Development Platform SoC outside the clusters, that is, the parts of the chip that operate from the VSYS power supply.

--- Caution ---

You cannot use a core in one cluster to obtain a current or power consumption value of the same cluster. Because the process of reading a current or power register alters the current and power consumption of that cluster such a measurement is not valid.

For this reason you cannot use a Cortex-A57 core to obtain the instantaneous current or power consumption of the Cortex-A57 cluster. You must use one of the Cortex-A53 cores to obtain these values for the Cortex-A57 cluster.

Similarly, you cannot use a Cortex-A53 core to obtain the instantaneous current or power consumption of the Cortex-A53 cluster. You must use one of the Cortex-A57 cores to obtain these values for the Cortex-A53 cluster.

--- Note ---

Providing that the measurement process takes a short time relative to the application process, you can use a core in one cluster to obtain the cumulative energy consumption of the same cluster. This is because the cumulative energy value is a long-term measurement and the short time spent in reading the energy register does not greatly affect the result.

Therefore you can use a Cortex-A57 core to measure the cumulative energy consumption of the Cortex-A57 cluster and a Cortex-A53 core to read the cumulative energy consumption of the Cortex-A53 cluster.
The following table shows the energy registers in offset order from the APB registers base memory address of 0x1C010000.

Table 4-21 V2M-Juno motherboard energy meter register summary

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Reset</th>
<th>Width</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00D0</td>
<td>SYS_I_SYS</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.2 SYS_I_SYS Register on page 4-106.</td>
</tr>
<tr>
<td>0x00D4</td>
<td>SYS_I_A57</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.3 SYS_I_A57 Register on page 4-106.</td>
</tr>
<tr>
<td>0x00D8</td>
<td>SYS_I_A53</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.4 SYS_I_A53 Register on page 4-107.</td>
</tr>
<tr>
<td>0x00DC</td>
<td>SYS_I_GPU</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.5 SYS_I_GPU Register on page 4-108.</td>
</tr>
<tr>
<td>0x00E0</td>
<td>SYS_V_SYS</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.6 SYS_V_SYS Register on page 4-108.</td>
</tr>
<tr>
<td>0x00E4</td>
<td>SYS_V_A57</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.7 SYS_V_A57 Register on page 4-109.</td>
</tr>
<tr>
<td>0x00E8</td>
<td>SYS_V_A53</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.8 SYS_V_A53 Register on page 4-110.</td>
</tr>
<tr>
<td>0x00EC</td>
<td>SYS_V_GPU</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.9 SYS_V_GPU Register on page 4-111.</td>
</tr>
<tr>
<td>0x00F0</td>
<td>SYS_POW_SYS</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.10 SYS_POW_SYS Register on page 4-111.</td>
</tr>
<tr>
<td>0x00F4</td>
<td>SYS_POW_A57</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.11 SYS_POW_A57 Register on page 4-112.</td>
</tr>
<tr>
<td>0x00F8</td>
<td>SYS_POW_A53</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.12 SYS_POW_A53 Register on page 4-113.</td>
</tr>
<tr>
<td>0x00FC</td>
<td>SYS_POW_GPU</td>
<td>RO</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.13 SYS_POW_GPU Register on page 4-114.</td>
</tr>
<tr>
<td>0x0100</td>
<td>SYS_ENM_L_SYS</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.14 SYS_ENM_SYS Register on page 4-114.</td>
</tr>
<tr>
<td>0x0104</td>
<td>SYS_ENM_H_SYS</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.14 SYS_ENM_SYS Register on page 4-114.</td>
</tr>
<tr>
<td>0x0108</td>
<td>SYS_ENM_L_A57</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.15 SYS_ENM_A57 Register on page 4-115.</td>
</tr>
<tr>
<td>0x010C</td>
<td>SYS_ENM_H_A57</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.15 SYS_ENM_A57 Register on page 4-115.</td>
</tr>
<tr>
<td>0x0110</td>
<td>SYS_ENM_L_A53</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.16 SYS_ENM_A53 Register on page 4-116.</td>
</tr>
<tr>
<td>0x0114</td>
<td>SYS_ENM_H_A53</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.16 SYS_ENM_A53 Register on page 4-116.</td>
</tr>
</tbody>
</table>
Table 4-21 V2M-Juno motherboard energy meter register summary (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Reset</th>
<th>Width</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0118</td>
<td>SYS_ENM_L_GPU</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.17 SYS_ENM_GPU Register on page 4-117.</td>
</tr>
<tr>
<td>0x011C</td>
<td>SYS_ENM_H_GPU</td>
<td>RW</td>
<td>0x00000000</td>
<td>32</td>
<td>See 4.5.17 SYS_ENM_GPU Register on page 4-117.</td>
</tr>
</tbody>
</table>

Related information

2.4.1 Power control and Dynamic Voltage and Frequency Scaling (DVFS) on page 2-27

4.5.2 SYS_I_SYS Register

The SYS_I_SYS Register characteristics are:

Purpose

Contains a 12-bit representation of the instantaneous current consumption of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

```
31   |   |   |   | 12 | 11 |   | 0
     |   |   |   |   |   |   |   
     | Reserved |     |     | SYS_I_SYS |
```

Figure 4-18 SYS_I_SYS Register bit assignments

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>Reserved</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[11:0]</td>
<td>SYS_I_SYS</td>
<td>12-bit representation of the instantaneous current consumption of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Full scale measurement, 4096, represents 5A. Full scale is 0xFFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measured current = (SYS_I_SYS+1)/761 amperes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Related information

4.5.1 APB energy register summary on page 4-104

4.5.3 SYS_I_A57 Register

The SYS_I_A57 Register characteristics are:
Purpose

Contains a 12-bit representation of the instantaneous current consumption of the Cortex-A57 cluster.

Usage constraints

This register is read-only. You must use one of the Cortex-A53 cores to read this register.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

```
<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>16</th>
<th>8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>SYS_I_A57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 4-19 SYS_I_A57 Register bit assignments

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[11:0]</td>
<td>SYS_I_A57</td>
<td>12-bit representation of the current consumption of the Cortex-A57 cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Full scale measurement, 4096, represents 10A. Full scale is $0xFFF$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measured current = (SYS_I_A57+1)/381 amperes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Table 4-23 SYS_I_A57 Register bit assignments

Related information

4.5.1 APB energy register summary on page 4-104

4.5.4 SYS_I_A53 Register

The SYS_I_A53 Register characteristics are:

Purpose

Contains a 12-bit representation of the instantaneous current consumption of the Cortex-A53 cluster.

Usage constraints

This register is read-only. You must use one of the Cortex-A57 cores to read this register.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

```
<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>16</th>
<th>8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>SYS_I_A53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 4-20 SYS_I_A53 Register bit assignments
The following table shows the bit assignments.

Table 4-24 SYS_I_A53 Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[11:0]</td>
<td>SYS_I_A53</td>
<td>12-bit representation of current consumption of the Cortex-A53 cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Full scale measurement, 4096, represents 5A. Full scale is 0xFFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measured current = (SYS_I_A53 + 1)/761 amperes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Related information

4.5.1 APB energy register summary on page 4-104

4.5.5 SYS_I_GPU Register

The SYS_I_GPU Register characteristics are:

Purpose

Contains a 12-bit representation of the instantaneous current consumption of the Mali-T624 GPU cluster.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-21 SYS_I_GPU Register bit assignments](image)

The following table shows the bit assignments.

Table 4-25 SYS_I_GPU Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[11:0]</td>
<td>SYS_I_GPU</td>
<td>12-bit representation of current consumption of the Mali-T624 GPU cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Full scale measurement, 4096, represents 10A. Full scale is 0xFFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measured current = (SYS_I_GPU + 1)/381 amperes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Related information

4.5.1 APB energy register summary on page 4-104

4.5.6 SYS_V_SYS Register

The SYS_V_SYS Register characteristics are:
Purpose
Contains a 12-bit representation of the instantaneous supply voltage of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply.

Usage constraints
This register is read-only.

Configurations
Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-22 SYST_V_SYS Register bit assignments](image)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [11:0] | SYS_V_SYS | 12-bit representation of the instantaneous supply voltage of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply:
 - Full scale measurement, 4096, represents 2.5V. Full scale is 0xFFF.
 - Measured voltage = (SYS_V_SYS+1)/1622 volts.
 - The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset. |

Related information
4.5.1 APB energy register summary on page 4-104

4.5.7 SYS_V_A57 Register

The SYS_V_A57 Register characteristics are:

Purpose
Contains a 12-bit representation of the instantaneous supply voltage of the Cortex-A57 cluster.

Usage constraints
This register is read-only.

Configurations
Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.
Reserved 11 12

SYS_V_A57

Figure 4-23 SYS_V_A57 Register bit assignments

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [11:0] | SYS_V_A57 | 12-bit representation of the instantaneous supply voltage of the Cortex-A57 cluster:
 • Full scale measurement, 4096, represents 2V5. Full scale is 0xFFF.
 • Measured voltage = (SYS_V_A57 + 1) /1622 volts.
 • The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset. |

Related information

4.5.1 APB energy register summary on page 4-104

4.5.8 SYS_V_A53 Register

The SYS_V_A53 Register characteristics are:

Purpose

Contains a 12-bit representation of the instantaneous supply voltage of the Cortex-A53 cluster.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

Reserved 12 11

SYS_V_A53

Figure 4-24 SYS_V_A53 Register bit assignments

The following table shows the bit assignments.
Table 4-28 SYS_V_A53 Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [11:0] | SYS_V_A53 | 12-bit representation of the instantaneous supply voltage of the Cortex-A53 cluster:
| | | - Full scale measurement, 4096, represents 2V5. Full scale is 0xFFF. |
| | | - Measured voltage = (SYS_V_A53+1)/1622 volts. |
| | | - The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset. |

Related information

4.5.1 APB energy register summary on page 4-104

4.5.9 SYS_V_GPU Register

The SYS_V_GPU Register characteristics are:

Purpose

Contains a 12-bit representation of the instantaneous supply voltage of the Mali-T624 GPU cluster.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-25 SYS_V_GPU Register bit assignments](image_url)

The following table shows the bit assignments.

Table 4-29 SYS_V_GPU Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:12]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [11:0] | SYS_V_GPU | 12-bit representation of the instantaneous supply voltage of the Mali-T624 GPU cluster:
| | | - Full scale measurement, 4096, represents 2V5. Full scale is 0xFFF. |
| | | - Measured voltage = (SYS_V_GPU+1)/1622 volts. |
| | | - The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset. |

Related information

4.5.1 APB energy register summary on page 4-104

4.5.10 SYS POW_SYS Register

The SYS POW_SYS Register characteristics are:
Purpose

Contains a 24-bit representation of the instantaneous power consumption of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

```
<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>23</th>
<th></th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>SYS POW SYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 4-26 SYS POW SYS Register bit assignments

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:24]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
<tr>
<td>[23:0]</td>
<td>SYS POW SYS</td>
<td>24-bit representation of the instantaneous power consumption of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The value of these bits represents [SYS I SYS(I) × SYS V SYS(V)]/1234803 watts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measured power consumption=(SYS POW SYS)/1234803</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Related information

4.5.1 APB energy register summary on page 4-104

4.5.11 SYS POW A57 Register

The SYS POW A57 Register characteristics are:

Purpose

Contains a 24-bit representation of the instantaneous power consumption of the Cortex-A57 cluster.

Usage constraints

This register is read-only. You must use one of the cores in the Cortex-A53 cluster to read this register.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.
The following table shows the bit assignments.

Table 4-31 SYS_POW_A57 Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:24]</td>
<td>[Reserved]</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [23:0] | SYS_POW_A57 | 24-bit representation of the instantaneous power consumption of the Cortex-A57 cluster:
 • The value of these bits represents \([\text{SYS} _ \text{I} _ \text{A57}(I) \times \text{SYS} _ \text{V} _ \text{A57}(V)]/617402 \text{ watts.}\)
 • Measured power consumption=\((\text{SYS} _ \text{POW} _ \text{A57})/617402 \text{ watts.}\)
 • The CB_nRST reset signal resets the register to zero. The register then updates every 100\(\mu\)s after the reset. |

Related information

4.5.1 APB energy register summary on page 4-104

4.5.12 SYS_POW_A53 Register

The SYS_POW_A53 Register characteristics are:

Purpose

Contains a 24-bit representation of the instantaneous power consumption of the Cortex-A53 cluster.

Usage constraints

This register is read-only. You must use one of the cores in the Cortex-A57 cluster to read this register.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

Figure 4-28 SYS_POW_A53 Register bit assignments

The following table shows the bit assignments.
Table 4-32 SYS_POW_A53 Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:24]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [23:0] | SYS_POW_A53 | 24-bit representation of the instantaneous power consumption of the Cortex-A53 cluster:
| | | • The value of these bits represents \([SYS_I_A53(I) \times SYS_V_A53(V)]/1234803\) watts.
| | | • Measured power consumption=\((SYS_POW_A53)/1234803\) watts.
| | | • The \(CB_nRST\) reset signal resets the register to zero. The register then updates every 100\(\mu\)s after the reset. |

Related information

4.5.1 APB energy register summary on page 4-104

4.5.13 SYS_POW_GPU Register

The SYS_POW_GPU Register characteristics are:

Purpose

Contains a 24-bit representation of the instantaneous power consumption of the Mali-T624 GPU cluster.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-29 SYS_POW_GPU Register bit assignments](image)

The following table shows the bit assignments.

Table 4-33 SYS_POW_GPU Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:24]</td>
<td>-</td>
<td>Reserved. If you read this register, you must ignore these bits.</td>
</tr>
</tbody>
</table>
| [23:0] | SYS_POW_GPU | 24-bit representation of the instantaneous power consumption of the Mali-T624 GPU cluster:
| | | • The value of these bits represents \((SYS_I_GPU(I) \times SYS_V_GPU(V))/617402\) watts.
| | | • Measured power consumption=\((SYS_POW_GPU)/617402\) watts.
| | | • The \(CB_nRST\) reset signal resets the register to zero. The register then updates every 100\(\mu\)s after the reset. |

Related information

4.5.1 APB energy register summary on page 4-104

4.5.14 SYS_ENM_SYS Register

The SYS_ENM_SYS Register characteristics are:
Purpose

Contains a 64-bit representation of the accumulated energy consumption of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply.

Usage constraints

Writing to this register clears the 64-bit value.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-30 SYS_ENM_SYS Register bit assignments](image)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
</table>
| [63:32]| SYS_ENM_H_SYS | Most significant 32 bits of a 64-bit energy meter. Contains a representation of the accumulated energy consumption of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply:
 • The memory address offset of these bits is 0x0104.
 • Accumulated energy = (SYS_ENM_H_SYS:SYS_ENM_L_SYS)/12348030000 joules.
 • The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset. |
| [31:0]| SYS_ENM_L_SYS | Least significant 32 bits of a 64-bit energy meter. Contains a representation of the accumulated energy consumption of the parts of the Juno SoC, outside the clusters, that operate from the VSYS power supply:
 • The memory address offset of these bits is 0x0100.
 • Accumulated energy = (SYS_ENM_H_SYS:SYS_ENM_L_SYS)/12348030000 joules.
 • The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset. |

Related information

4.5.1 APB energy register summary on page 4-104

4.5.15 SYS_ENM_A57 Register

The SYS_ENM_A57 Register characteristics are:

Purpose

Contains a 64-bit representation of the accumulated energy consumption of the Cortex-A57 cluster.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.
The following figure shows the bit assignments.

![Figure 4-31 SYS_ENM_A57 Register bit assignments](image1)

The following table shows the bit assignments.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>SYS_ENM_H_A57</td>
<td>Most significant 32 bits of a 64-bit representation of the accumulated energy consumption of the Cortex-A57 cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The memory address offset of these bits is 0x010C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accumulated energy = (SYS_ENM_H_A57:SYS_ENM_L_A57)/6174020000 joules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
<tr>
<td>[31:0]</td>
<td>SYS_ENM_L_A57</td>
<td>Least significant 32 bits of a 64-bit representation of the accumulated energy consumption of the Cortex-A57 cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The memory address offset of these bits is 0x0108.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accumulated energy = (SYS_ENM_H_A57:SYS_ENM_L_A57)/6174020000 joules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Related information

4.5.1 APB energy register summary on page 4-104

4.5.16 SYS_ENM_A53 Register

The SYS_ENM_A53 Register characteristics are:

Purpose

Contains a 64-bit representation of the accumulated energy consumption of the Cortex-A53 cluster.

Usage constraints

This register is read-only.

Configurations

Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

![Figure 4-32 SYS_ENM_A53 Register bit assignments](image2)

The following table shows the bit assignments.
Table 4-36 SYS_ENM_A53 Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>SYS_ENM_H_A53</td>
<td>Most significant 32 bits of a 64-bit representation of the accumulated energy consumption of the Cortex-A53 cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The memory address offset of these bits is 0x0114.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accumulated energy = (SYS_ENM_H_A53:SYS_ENM_L_A53)/12348030000 joules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
<tr>
<td>[31:0]</td>
<td>SYS_ENM_L_A53</td>
<td>Least significant 32 bits of a 64-bit representation of the accumulated energy consumption of the Cortex-A53 cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The memory address offset of these bits is 0x0110.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accumulated energy = (SYS_ENM_H_A53:SYS_ENM_L_A53)/12348030000 joules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Related information
4.5.1 APB energy register summary on page 4-104

4.5.17 SYS_ENM_GPU Register

The SYS_ENM_GPU Register characteristics are:

Purpose
- Contains a 64-bit representation of the accumulated energy consumption of the Mali-T624 GPU cluster.

Usage constraints
- This register is read-only.

Configurations
- Available in all V2M-Juno motherboard configurations.

The following figure shows the bit assignments.

```
   63 | ... | 32 | 31 | ... | 0
       ---------------------------
        SYS_ENM_H_GPU            SYS_ENM_L_GPU
```

Figure 4-33 SYS_ENM_GPU Register bit assignments

The following table shows the bit assignments.
Table 4-37 SYS_ENM_GPU Register bit assignments

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>SYS_ENM_H_GPU</td>
<td>Most significant 32 bits of a 64-bit representation of the accumulated energy consumption of the Mali-T624 GPU cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The memory address offset of these bits is 0x011C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accumulated energy = (SYS_ENM_H_GPU:SYS_ENM_L_GPU)/6174020000 joules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
<tr>
<td>[31:0]</td>
<td>SYS_ENM_L_GPU</td>
<td>Least significant 32 bits of a 64-bit representation of the accumulated energy consumption of the Mali-T624 GPU cluster:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The memory address offset of these bits is 0x0118.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accumulated energy = (SYS_ENM_H_GPU:SYS_ENM_L_GPU)/6174020000 joules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The CB_nRST reset signal resets the register to zero. The register then updates every 100µs after the reset.</td>
</tr>
</tbody>
</table>

Related information

4.5.1 APB energy register summary on page 4-104
Appendix A
Signal Descriptions

This appendix describes the signals present at the interface connectors of the Versatile Express V2M-Juno motherboard.

It contains the following sections:

- **A.1 Debug connectors** on page Appx-A-120.
- **A.4 SMC 10/100 Ethernet connector** on page Appx-A-126.
- **A.6 Header connectors** on page Appx-A-128.
- **A.7 Keyboard and Mouse Interface (KMI) connector** on page Appx-A-129.
- **A.8 HDMI connectors** on page Appx-A-130.
- **A.10 Secure keyboard and user push buttons connector** on page Appx-A-133.
- **A.11 ATX power connector** on page Appx-A-134.
A.1 Debug connectors

The V2M-Juno motherboard provides one P-JTAG and two trace connectors for debug.

This section contains the following subsections:
- A.1.2 Trace connectors on page Appx-A-121.

A.1.1 P-JTAG connector

The V2M-Juno motherboard provides one P-JTAG connector.

The P-JTAG connector also supports Serial Wire Debug (SWD).

The V2M-Juno motherboard labels the P-JTAG connector as CS_JTAG.

The following figure shows the P-JTAG connector, J25.

![Figure A-1 P-JTAG connector, J25](image)

The following table shows the pin mapping for the P-JTAG signals on the P-JTAG connector, J25.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VTREFC (1V8)</td>
<td>2</td>
<td>CS_BS_VSUPPLY (1V8)</td>
</tr>
<tr>
<td>3</td>
<td>nTRST</td>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>TDI</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>SWDIO/TMS</td>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>SWDCLK/TCK</td>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>GND/RTCK</td>
<td>12</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>SWO/TDO</td>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>nSRST</td>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>No connection/EDBGRQ</td>
<td>18</td>
<td>GNDDETECT</td>
</tr>
<tr>
<td>19</td>
<td>No connection/DBGACK</td>
<td>20</td>
<td>GND</td>
</tr>
</tbody>
</table>

Note

- Pins 9 and 17 have pulldown resistors to 0V.
- Pin 11 has a pulldown resistor to 0V. V2M-Juno motherboard does not support adaptive clocking.
- Pins 3, 5, 7, 13, 15, and 19 have pullup resistors to 1V8.
- Pins 7 and 9 are dual-mode pins that enable the Juno SoC to support both the JTAG and SWD protocols.

Related information

2.16 Debug and trace on page 2-58
A.1.2 Trace connectors

The V2M-Juno motherboard provides two debug connectors that together support 32-bit trace.

The Juno Arm Development Platform SoC supports up to 32-bit trace output from the CoreSight Trace Port Interface Unit (TPIU) and enables connection of a compatible trace unit. Two MICTOR trace connectors, labeled TRACEA-SINGLE and TraceB DUAL, connect to the TPIU.

The two connectors support 32-bit trace when you use them together. The TRACEA-SINGLE connector, when you use it alone, supports 16-bit trace.

The connectors also support Serial Wire Debug (SWD).

Note

• DSTREAM is an example of a trace module that you can use.
• All trace and SWD signals operate at 1.8V.
• The trace connectors cannot supply power to a trace unit.

The following figure shows the MICTOR 38 connector.

![Figure A-2 MICTOR 38 connector, J27 and J28](image)

The following table shows the pin mapping for the Trace and SWD signals on the TRACEA-SINGLE connector, J28.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No connection</td>
<td>2</td>
<td>No connection</td>
</tr>
<tr>
<td>3</td>
<td>No connection</td>
<td>4</td>
<td>No connection</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>6</td>
<td>TRACE_CLKA</td>
</tr>
<tr>
<td>7</td>
<td>EDBGRQ</td>
<td>8</td>
<td>DBGACK</td>
</tr>
<tr>
<td>9</td>
<td>No connection/nSRST</td>
<td>10</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>TDO/SWO</td>
<td>12</td>
<td>1V8 reference</td>
</tr>
<tr>
<td>13</td>
<td>RTCK</td>
<td>14</td>
<td>1V8_OUT</td>
</tr>
<tr>
<td>15</td>
<td>TCK/SWCLK</td>
<td>16</td>
<td>TRACEDATA[7]</td>
</tr>
<tr>
<td>17</td>
<td>TMS/SWDIO</td>
<td>18</td>
<td>TRACEDATA[6]</td>
</tr>
<tr>
<td>19</td>
<td>TDI</td>
<td>20</td>
<td>TRACEDATA[5]</td>
</tr>
<tr>
<td>21</td>
<td>nTRST</td>
<td>22</td>
<td>TRACEDATA[4]</td>
</tr>
<tr>
<td>Pin</td>
<td>Signal</td>
<td>Pin</td>
<td>Signal</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-----</td>
<td>--------------</td>
</tr>
<tr>
<td>29</td>
<td>TRACEDATA[12]</td>
<td>30</td>
<td>GND</td>
</tr>
<tr>
<td>33</td>
<td>TRACEDATA[10]</td>
<td>34</td>
<td>1V8 reference</td>
</tr>
<tr>
<td>35</td>
<td>TRACEDATA[9]</td>
<td>36</td>
<td>TRACELCTL</td>
</tr>
<tr>
<td>37</td>
<td>TRACEDATA[8]</td>
<td>38</td>
<td>TRACEDATA[0]</td>
</tr>
</tbody>
</table>

Note
- The trace connector cannot supply power to a trace unit.
- The interface does not support the TRACELCTL signal. The Juno SoC always drives this signal LOW.

The following table shows the pin mapping for the trace signals on the TraceB DUAL connector, J27.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No connection</td>
<td>2</td>
<td>No connection</td>
</tr>
<tr>
<td>3</td>
<td>No connection</td>
<td>4</td>
<td>No connection</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>6</td>
<td>TRACE_CLKB</td>
</tr>
<tr>
<td>7</td>
<td>No connection</td>
<td>8</td>
<td>No connection</td>
</tr>
<tr>
<td>9</td>
<td>No connection</td>
<td>10</td>
<td>No connection</td>
</tr>
<tr>
<td>11</td>
<td>No connection</td>
<td>12</td>
<td>1V8 reference</td>
</tr>
<tr>
<td>13</td>
<td>No connection</td>
<td>14</td>
<td>No connection</td>
</tr>
<tr>
<td>15</td>
<td>No connection</td>
<td>16</td>
<td>TRACEDATA[23]</td>
</tr>
<tr>
<td>17</td>
<td>No connection</td>
<td>18</td>
<td>TRACEDATA[22]</td>
</tr>
<tr>
<td>19</td>
<td>No connection</td>
<td>20</td>
<td>TRACEDATA[21]</td>
</tr>
<tr>
<td>21</td>
<td>No connection</td>
<td>22</td>
<td>TRACEDATA[20]</td>
</tr>
<tr>
<td>23</td>
<td>TRACEDATA[31]</td>
<td>24</td>
<td>TRACEDATA[19]</td>
</tr>
<tr>
<td>27</td>
<td>TRACEDATA[29]</td>
<td>28</td>
<td>TRACEDATA[17]</td>
</tr>
<tr>
<td>29</td>
<td>TRACEDATA[28]</td>
<td>30</td>
<td>GND</td>
</tr>
<tr>
<td>31</td>
<td>TRACEDATA[27]</td>
<td>32</td>
<td>GND</td>
</tr>
<tr>
<td>33</td>
<td>TRACEDATA[26]</td>
<td>34</td>
<td>1V8 reference</td>
</tr>
<tr>
<td>35</td>
<td>TRACEDATA[25]</td>
<td>36</td>
<td>No connection</td>
</tr>
<tr>
<td>37</td>
<td>TRACEDATA[24]</td>
<td>38</td>
<td>TRACEDATA[16]</td>
</tr>
</tbody>
</table>
Related information

2.16 Debug and trace on page 2-58
1.3 Location of components on the V2M Juno motherboard on page 1-15
A.2 Configuration 10Mbps Ethernet and dual-USB connector

The V2M-Juno motherboard provides one connector that supports 10Mbps Ethernet access to the microSD card and provides two of the four general-purpose dual-USB 2.0 ports on the board.

The configuration 10Mbps Ethernet connects to the Ethernet LAN controller in the MCC. You can use the configuration 10Mbps Ethernet port to perform Drag-and-Drop configuration file editing in the V2M-Juno motherboard microSD card.

The two USB 2.0 ports connect to the USB 4-port hub. They provide two of the four general-purpose USB 2.0 ports on the V2M-Juno motherboard.

The following figure shows the configuration 10Mbps Ethernet and dual-USB 2.0 connector, J40.

Figure A-3 Configuration 10Mbps Ethernet and dual-USB 2.0 connector, J40

Related information
2.11 USB 2.0 interface on page 2-51
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
3.3.1 Overview of configuration files and microSD card directory structure on page 3-69
A.3 Dual-USB connector

A dual-USB connector provides two of the four general-purpose USB 2.0 ports on the board.

The two USB 2.0 ports connect to the USB 4-port hub. They provide two of the four general-purpose USB 2.0 ports on the V2M-Juno motherboard.

--- Note ---

Arm reserves the use of the Ethernet connector in the combined connector. Do not attempt to use the Ethernet connector.

The following figure shows the dual-USB 2.0 connector, J37.

![Figure A-4 Dual-USB 2.0 connector, J37](image)

Related information

- 2.11 USB 2.0 interface on page 2-51
- 1.3 Location of components on the V2M-Juno motherboard on page 1-15
- 1.4 Connectors on front and rear panels on page 1-17
A.4 SMC 10/100 Ethernet connector

The V2M-Juno motherboard provides one SMC 10/100 Ethernet connector.

The following figure shows the SMC 10/100 Ethernet connector, J50.

Figure A-5 SMC 10/100 Ethernet connector, J50

Related information
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
2.12 SMC 10/100 Ethernet interface on page 2-52
A.5 Configuration USB connector

The configuration USB connector provides access to the root directory and subdirectories of the microSD card.

You can use the configuration USB port to perform Drag-and-Drop configuration file editing in the V2M-Juno motherboard configuration microSD card.

The following figure shows the configuration USB 2.0 connector, J48.

![Configuration USB 2.0 connector, J48](image)

Related information

1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
3.3.1 Overview of configuration files and microSD card directory structure on page 3-69
A.6 Header connectors

Two high-density header connectors enable you to fit a LogicTile FPGA board to the daughterboard site on the V2M-Juno motherboard.

Header X, J1, routes the Thin Links buses between the Juno Arm Development Platform SoC on the V2M-Juno motherboard and the FPGA on the LogicTile daughterboard fitted in the daughterboard site.

Header Y, J4, routes the buses and power interconnect between the V2M-Juno motherboard and the LogicTile FPGA daughterboard.

The constraints file, `an415_rapper.xdc`, available in *Application Note AN415 Example LogicTile Express 20MG design* for a V2M-Juno Motherboard, lists the header signals.

Related information

1.3 *Location of components on the V2M-Juno motherboard* on page 1-15
A.7 Keyboard and Mouse Interface (KMI) connector

The V2M-Juno motherboard provides a dual mini-DIN connector that supports PS/2 keyboard and mouse input to the Juno Arm Development Platform SoC.

The following figure shows the dual-mini-DIN KMI connector, J59.

![Dual mini-DIN KMI connector, J59](image)

Related information

- 2.14 Keyboard and mouse interface on page 2-55
- 1.3 Location of components on the V2M-Juno motherboard on page 1-15
- 1.4 Connectors on front and rear panels on page 1-17
A.8 HDMI connectors

Two female HDMI connectors provide digital video and digital audio to external displays.

The following figure shows the HDMI connectors, J53 and J54.

![HDMI connector, J53 and J54](image)

The following table shows the pin mapping for the HDMI signals, that include encoded I²S digital audio, on the HDMI connectors.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DVI_TX2P</td>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>DVI_TX2N</td>
<td>4</td>
<td>DVI_TX1P</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>6</td>
<td>DVI_TX1N</td>
</tr>
<tr>
<td>7</td>
<td>DVI_TX0P</td>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>DVI_TX0N</td>
<td>10</td>
<td>DVI_TXCP</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>12</td>
<td>DVI_TXCN</td>
</tr>
<tr>
<td>13</td>
<td>DVI_CECAO</td>
<td>14</td>
<td>No connection</td>
</tr>
<tr>
<td>15</td>
<td>DVI_DSCLO</td>
<td>16</td>
<td>DVI_DSDAO</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>18</td>
<td>DVI_5V0</td>
</tr>
<tr>
<td>19</td>
<td>DVI_HPDO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related information

2.9 HDLCD interface on page 2-46
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
A.9 Dual-UART connector

One dual-UART connector provides access to the MCC.

The UART port enables you to access the command-line interface in the MCC and perform application software debugging.

Note

The UART I/O voltage at the connectors is 3.3V.

The following figure shows the dual-UART connector, J57.

Figure A-9 Dual-UART connector, J57A, upper, and J57B, lower

The following table shows the pin mapping for UART 0. This is the upper connector, J57A, of the dual-UART connector, J57.

Table A-5 UART 0 connector, J57A, signal list

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>No connection</td>
</tr>
<tr>
<td>A2</td>
<td>SER0_RX</td>
</tr>
<tr>
<td>A3</td>
<td>SER0_TX</td>
</tr>
<tr>
<td>A4</td>
<td>SER0_DTR</td>
</tr>
<tr>
<td>A5</td>
<td>GND</td>
</tr>
<tr>
<td>A6</td>
<td>SER0_DSR</td>
</tr>
<tr>
<td>A7</td>
<td>SER0_RTS</td>
</tr>
<tr>
<td>A8</td>
<td>SER0_CTS</td>
</tr>
<tr>
<td>A9</td>
<td>No connection</td>
</tr>
</tbody>
</table>

The following table shows the pin mapping for UART 1. This is the lower connector, J57B, of the dual-UART connector, J57.

Table A-6 UART 1 connector, J57B, signal list

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>No connection</td>
</tr>
<tr>
<td>A2</td>
<td>SER1_RX</td>
</tr>
<tr>
<td>A3</td>
<td>SER1_TX</td>
</tr>
<tr>
<td>A4</td>
<td>SER1_DTR</td>
</tr>
<tr>
<td>A5</td>
<td>GND</td>
</tr>
</tbody>
</table>
Table A-6 UART 1 connector, J57B, signal list (continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6</td>
<td>SER1_DSR</td>
</tr>
<tr>
<td>A7</td>
<td>SER1_RTS</td>
</tr>
<tr>
<td>A8</td>
<td>SER1_CTS</td>
</tr>
<tr>
<td>A9</td>
<td>No connection</td>
</tr>
</tbody>
</table>

Related information

2.13 UART interface on page 2-53
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
A.10 Secure keyboard and user push buttons connector

One 9-pin mini-DIN connector supports additional key entry to the V2M-Juno motherboard.

The following figure shows the secure keyboard and user push buttons connector, J58.

![Figure A-10 Secure keyboard connector, J58](image)

The following table shows the pin mapping for the secure keyboard and user push buttons connector, J58.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEC_DF</td>
</tr>
<tr>
<td>2</td>
<td>SEC_PB0</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>SEC_PB1</td>
</tr>
<tr>
<td>5</td>
<td>5V_KMI</td>
</tr>
<tr>
<td>6</td>
<td>SEC_CF</td>
</tr>
<tr>
<td>7</td>
<td>SEC_PB2</td>
</tr>
<tr>
<td>8</td>
<td>SEC_PB3</td>
</tr>
<tr>
<td>9</td>
<td>SEC_PB4</td>
</tr>
</tbody>
</table>

Table A-7 Secure keyboard and user push buttons connector, J58, signal list

Related information

2.15 Additional user key entry on page 2-56
1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
A.11 ATX power connector

The V2M-Juno motherboard provides one power connector that enables connection of a unit that Arm supplies with the V2M-Juno motherboard. This unit converts AC mains power to DC power to supply the board.

The following figure shows the ATX power connector, J20.

![ATX power connector](image)

Figure A-11 ATX power connector, J20

The following table shows the pin mapping for the ATX power connector, J20, on the V2M-Juno motherboard.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3V3</td>
<td>13</td>
<td>3V3</td>
</tr>
<tr>
<td>2</td>
<td>3V3</td>
<td>14</td>
<td>-12V</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>5V</td>
<td>16</td>
<td>nATXON</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>5V</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>PWOK</td>
<td>20</td>
<td>No connection</td>
</tr>
<tr>
<td>9</td>
<td>SB_5V</td>
<td>21</td>
<td>5V</td>
</tr>
<tr>
<td>10</td>
<td>12V</td>
<td>22</td>
<td>5V</td>
</tr>
<tr>
<td>11</td>
<td>12V</td>
<td>23</td>
<td>5V</td>
</tr>
<tr>
<td>12</td>
<td>3V3</td>
<td>24</td>
<td>GND</td>
</tr>
</tbody>
</table>

Table A-8 ATX power connector, J20, signal list

Related information

1.3 Location of components on the V2M-Juno motherboard on page 1-15
2.3 External power on page 2-26
Appendix B
Prototype V2M-Juno motherboard

This appendix describes the Versatile Express V2M-Juno motherboard that provides two SMC USB 2.0 ports.

It contains the following sections:

- B.1 Overview of the prototype V2M-Juno motherboard on page Appx-B-136.
- B.2 Location of components on the prototype V2M-Juno motherboard on page Appx-B-137.
- B.3 IOFPGA internal architecture with SMC USB ports on page Appx-B-138.
- B.4 SMC memory map of the prototype V2M-Juno motherboard on page Appx-B-140.
- B.5 SMC USB 2.0 connectors on page Appx-B-142.
B.1 Overview of the prototype V2M-Juno motherboard

The prototype version of the V2M-Juno motherboard provides two SMC USB 2.0 ports that the production version does not provide.

The two SMC USB 2.0 ports connect to the SMC bus through the IOFPGA and have a dedicated chip select, CS5. The prototype board also provides all the features of the production version.
B.2 Location of components on the prototype V2M-Juno motherboard

The following figure shows the physical layout of the upper face of the prototype V2M-Juno motherboard.

![Prototype V2M-Juno motherboard layout, upper face](image_url)

Figure B-1 Prototype V2M-Juno motherboard layout, upper face
B.3 IOFPGA internal architecture with SMC USB ports

The following figure shows the internal architecture, with SMC USB 2.0 ports, of the IOFPGA on the prototype V2M-Juno motherboard.
Figure B-2 Internal architecture of the IOFPGA on the prototype V2M-Juno motherboard
B.4 SMC memory map of the prototype V2M-Juno motherboard

The following figure shows the SMC memory map of the prototype V2M-Juno motherboard that includes the CS5 chip selects.

![SMC memory map of the prototype V2M-Juno motherboard](image)

Figure B-3 SMC memory map of the prototype V2M-Juno motherboard

The following table shows the SMC memory map of the production V2M-Juno motherboard.
Table B-1 SMC interface memory map of prototype V2M-Juno motherboard

<table>
<thead>
<tr>
<th>Address range</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x08000000 - 0x0BFFFFFF</td>
<td>64MB</td>
<td>CS0-Motherboard NOR flash.</td>
</tr>
<tr>
<td>0x0C000000 - 0x0FFFFFFF</td>
<td>64MB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>0x10000000 - 0x13FFFFFFF</td>
<td>64MB</td>
<td>CS5-USB 2.0.</td>
</tr>
<tr>
<td>0x14000000 - 0x1403FFFFF</td>
<td>256KB</td>
<td>CS1-256KB internal IOFPGA block RAM.</td>
</tr>
<tr>
<td>0x14040000 - 0x17FFFFFFF</td>
<td>65280KB</td>
<td>Reserved. Do not write to or read from these addresses.</td>
</tr>
<tr>
<td>0x18000000 - 0x1BFFFFFFF</td>
<td>64MB</td>
<td>CS2-10/100 Ethernet.</td>
</tr>
<tr>
<td>0x1C000000 - 0x1EFFFFFFF</td>
<td>48MB</td>
<td>CS3-IOFPGA peripherals.</td>
</tr>
</tbody>
</table>
B.5 SMC USB 2.0 connectors

The prototype V2M-Juno motherboard provides two SMC USB 2.0 connectors.
The following figure shows the SMC USB 2.0 connectors, J51 and J52.

Figure B-4 SMC USB 2.0 connectors, J51 and J52

Related information

1.3 Location of components on the V2M-Juno motherboard on page 1-15
1.4 Connectors on front and rear panels on page 1-17
Appendix C
Specifications

This appendix contains the electrical specifications of the Versatile Express V2M-Juno motherboard.

It contains the following section:

- *C.1 Electrical specification* on page Appx-C-144.
C.1 Electrical specification

This appendix contains electrical operating information for the Juno SoC.

The following table provides the maximum operating frequencies of the Cortex-A57 cluster, Cortex-A53 cluster, and Mali-T624 GPU power domains at supply voltages of 0.8V, 0.9V, and 1.0V.

<table>
<thead>
<tr>
<th>Operating voltage</th>
<th>Cortex-A57</th>
<th>Cortex-A53</th>
<th>Mali-T624 GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8V Underdrive</td>
<td>450MHz</td>
<td>450MHz</td>
<td>450MHz</td>
</tr>
<tr>
<td>0.9V Nominal</td>
<td>800MHz</td>
<td>700MHz</td>
<td>600MHz</td>
</tr>
<tr>
<td>1.0V Overdrive</td>
<td>1.1GHz</td>
<td>850MHz</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Appendix D
Revisions

This appendix describes the technical changes between released issues of this book. It contains the following section:

• D.1 Revisions on page Appx-D-146.
D.1 Revisions

This following table describes the technical changes between released issues of this book.

Table D-1 Issue DDI0524A

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>No changes, first release</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D-2 Differences between issue DDI0524A and issue DDI0524B

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added section describing how to calibrate PVT sensor.</td>
<td>2.4.2 Calibrating the PVT sensor on page 2-28</td>
<td>All versions of board.</td>
</tr>
<tr>
<td>Removed OSCCLKs 3, 6, 7 and 8 and associated clock outputs.</td>
<td>2.5.2 Juno SoC and V2M-Juno motherboard clocks on page 2-30</td>
<td>All versions of board.</td>
</tr>
<tr>
<td></td>
<td>2.9 HDLCD interface on page 2-46</td>
<td></td>
</tr>
<tr>
<td>Removed or modified some references to Juno Arm Development Platform SoC Technical Reference Manual (Revision r0p0).</td>
<td>Throughout the document.</td>
<td>All versions of board.</td>
</tr>
</tbody>
</table>

Table D-3 Differences between issue DDI0524B and issue DDI0524C

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated energy meter register names.</td>
<td>4.5.1 APB energy register summary on page 4-104</td>
<td>All versions of board.</td>
</tr>
</tbody>
</table>

Table D-4 Differences between issue DDI0524C and issue 100113_0000_03

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document number changed from Arm DDI0524 to 100113.</td>
<td>Throughout document</td>
<td>All versions of board.</td>
</tr>
<tr>
<td>Added LAN9118 information.</td>
<td>2.1 Overview of V2M-Juno motherboard hardware on page 2-19</td>
<td>All versions of board.</td>
</tr>
<tr>
<td></td>
<td>2.8 IOFPGA on page 2-43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.12 SMC 10/100 Ethernet interface on page 2-52</td>
<td></td>
</tr>
<tr>
<td>Corrected Juno SoC diagram.</td>
<td>2.2 Juno Arm Development Platform SoC on page 2-23</td>
<td>All versions of board.</td>
</tr>
</tbody>
</table>

Table D-5 Differences between issue 100113_0000_03 and issue 100113_0000_04

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected bit definition in register description.</td>
<td>4.3.6 SYS_FLAG Registers on page 4-92</td>
<td>All versions of board.</td>
</tr>
</tbody>
</table>
Table D-6 Differences between issue 100113_0000_04 and issue 100113_0000_05

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added statement about Expansion AXI over Thin Links providing a 256MB window.</td>
<td>2.2 Juno Arm® Development Platform SoC on page 2-23</td>
<td>V2M-Juno motherboard</td>
</tr>
<tr>
<td>Added details to top-level memory map diagram and note underneath memory map diagram.</td>
<td>4.2.1 Juno SoC top-level application and SMC interface memory maps on page 4-82</td>
<td>V2M-Juno motherboard</td>
</tr>
<tr>
<td>Added details to DDR3L memory map diagram.</td>
<td>4.2.3 DDR3L memory map on page 4-86</td>
<td>V2M-Juno motherboard</td>
</tr>
<tr>
<td>Updated list of typical applications in the SOFTWARE directory.</td>
<td>3.3.6 Contents of the SOFTWARE directory on page 3-73</td>
<td>V2M-Juno motherboard</td>
</tr>
<tr>
<td>Corrected signal name in reset architecture diagram.</td>
<td>2.6.2 Reset architecture on page 2-37</td>
<td>V2M-Juno motherboard</td>
</tr>
</tbody>
</table>

Table D-7 Differences between issue 100113_0000_05 and issue 100113_0000_06

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Thin Links operating speeds.</td>
<td>2.2 Juno Arm® Development Platform SoC on page 2-23</td>
<td>V2M-Juno motherboard</td>
</tr>
<tr>
<td></td>
<td>2.7.1 Overview of Thin Links AXI master and slave interfaces on page 2-40</td>
<td></td>
</tr>
</tbody>
</table>

Table D-8 Differences between issue 100113-0000-06 and issue 100113-0000-07

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated safety messages.</td>
<td>1.1.1 Ensuring safety on page 1-12</td>
<td>V2M-Juno motherboard</td>
</tr>
<tr>
<td>Removed reference to connecting an ATX power supply unit directly to the board.</td>
<td>2.3 External power on page 2-26</td>
<td>V2M-Juno motherboard</td>
</tr>
<tr>
<td>Added warning that only the power supply unit, that Arm supplies, must be used to power the board</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>