Confidentiality Status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status
The information in this document is Final, that is for a developed product.

Web Address
http://www.arm.com
Contents

Preface

Chapter 1 Introduction
1.1 About the LPD-500 Low Power Distributor .. 1-12
1.2 Compliance .. 1-13
1.3 Features .. 1-14
1.4 Interfaces ... 1-15
1.5 Configuration options .. 1-16
1.6 Product documentation and design flow ... 1-17
1.7 Product revisions .. 1-18

Chapter 2 Functional description
2.1 About the functions .. 2-20
2.2 Interfaces ... 2-22
2.3 Clocking and reset .. 2-23
2.4 Parameter summary ... 2-24

Chapter 3 Programmers model
3.1 Programmers model summary .. 3-26
Appendix A Signal descriptions
A.1 Clock and reset signals .. Appx-A-28
A.2 Q-Channel signals .. Appx-A-29

Appendix B Revisions
B.1 Revisions .. Appx-B-31
This preface introduces the ARM® CoreLink™ LPD-500 Low Power Distributor Technical Reference Manual.

It contains the following:
- About this book on page 7.
- Feedback on page 10.
About this book

This book is for the ARM® CoreLink™ LPD-500 Low Power Distributor.

Product revision status

The rmnp identifier indicates the revision status of the product described in this book, for example, r1p2, where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

This book is written for system designers, system integrators, and programmers who are designing or programming a System-on-Chip (SoC) that uses the LPD-500.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter describes the LPD-500 Low Power Distributor.

Chapter 2 Functional description
This chapter describes the functionality of the LPD-500.

Chapter 3 Programmers model
This chapter describes the programmers model.

Appendix A Signal descriptions
This appendix describes the external signals of the LPD-500.

Appendix B Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning differs from the generally accepted meaning.

See the ARM Glossary for more information.

Typographic conventions

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace italic Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.

monospace bold Denotes arguments to monospace text where the argument is to be replaced by a specific value.

Preface
About this book
Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:

\[
\text{MRC } p15, \theta, \langle R_d \rangle, \langle CR_n \rangle, \langle CR_m \rangle, \langle \text{Opcode}_2 \rangle
\]

Small capitals

Used in body text for a few terms that have specific technical meanings, that are defined in the *ARM glossary*. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

![Timing diagram conventions](image)

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See *Infocenter http://infocenter.arm.com*, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for other relevant information:

- *Low Power Interface Specification, ARM® Q-Channel and P-Channel Interfaces* (ARM IHI 0068).
- *ARM® Power Control System Architecture* (ARM DEN 0050).
The following confidential books are only available to licensees:

Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The number ARM 100361_0000_03_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

_________ Note _________

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.
Chapter 1
Introduction

This chapter describes the LPD-500 Low Power Distributor.

It contains the following sections:

• 1.1 About the LPD-500 Low Power Distributor on page 1-12.
• 1.2 Compliance on page 1-13.
• 1.3 Features on page 1-14.
• 1.4 Interfaces on page 1-15.
• 1.5 Configuration options on page 1-16.
• 1.6 Product documentation and design flow on page 1-17.
• 1.7 Product revisions on page 1-18.
1.1 About the LPD-500 Low Power Distributor

The LPD-500 Low Power Distributor is a standalone configurable component to distribute Q-Channel interfaces to multiple devices and subsystems.

Q-Channels are used to manage quiescence in components of the system that allow the clock to be gated off or power to be removed. Gating off a clock or removing power is done to save power when not operational.

The LPD-500 supports use cases where not all signals of the Q-Channel are used by an attached device. See the *ARM® CoreLink™ LPD-500 Low Power Distributor Integration and Implementation Manual* for more information.
1.2 Compliance

The LPD-500 Low Power Distributor implements the ARM Power Control System Architecture and complies with the *Low Power Interface Specification, ARM Q-Channel and P-Channel Interfaces*.

This Technical Reference Manual complements architecture reference manuals, architecture specifications, protocol specifications, and relevant external standards. It does not duplicate information from these sources.

See the *ARM® Power Control System Architecture* and the *Low Power Interface Specification, ARM® Q-Channel and P-Channel Interfaces* for more information.
1.3 Features

The LPD-500 provides a low latency method of controlling multiple, device-level, Low Power Interfaces (LPIs) from a single controller.

The LPD-500 Low Power Distributor supports the following key features:

- Expands a single Q-Channel LPI from a power controller or a clock controller into multiple Q-Channel LPIs for controlled devices.
- Low latency to and from device channels.
- Up to 32 device control channels.
- Cascadeable to multiple levels to expand beyond 32 devices.
- Optionally integrates synchronizers on request and accepts inputs for use in systems with different clock domains.
- Configurable as an expander, where all devices are controlled together, or as a sequencer, where all devices are controlled in a sequence.
- Optional active deny feature to allow a denial of quiescence that is based on a device QACTIVE signal.
1.4 Interfaces

The LPD-500 has two external interfaces.

The interfaces are:

• An input Q-Channel CTRLQ interface to receive commands.
• A configurable number of output Q-Channel DEVQ interfaces that forward commands to other devices.
1.5 **Configuration options**

This section describes the configuration options available in the LPD-500.

1.5.1 **Configuration parameters**

There are several configuration options available in the LPD-500.

Related references

2.4 Parameter summary on page 2-24.

1.5.2 **Static parameters**

There are no configurable static parameters in the LPD-500.

1.5.3 **Tie-off signals**

There are no configurable tie-off signals in the LPD-500.
1.6 Product documentation and design flow

The LPD-500 documentation includes a Technical Reference Manual (TRM) and an Integration and Implementation Manual (IIM). These books relate to the LPD-500 design flow.

Documentation

The LPD-500 documentation includes the following books:

The TRM describes the functionality and the effects of functional options on the behavior of the LPD-500. It is required at all stages of the design flow. The choices that you make in the design flow can mean that some of the behavior that is described in the TRM is not relevant.

Integration and Implementation Manual

The IIM describes:

• The available build configuration options and related issues in selecting them.
• How to configure the Register Transfer Level (RTL) with the build configuration options.
• How to integrate the LPD-500 into a SoC.
• How to implement the LPD-500 into your design. This section includes floorplanning guidelines and instructions on how to perform netlist dynamic verification on the LPD-500.
• The processes to sign off the integration and implementation of the design.

The ARM product deliverables include reference scripts and information about using them to implement your design.

Reference methodology documentation from your EDA tools vendor complements the IIM. The IIM is a confidential book that is only available to licensees.

Design flow

The LPD-500 is delivered as synthesizable RTL. Before it can be used in a product, it must go through the following processes:

Implementation

The implementer configures and synthesizes the RTL.

Integration

The integrator connects the implemented design into a SoC.

Each process can include implementation and integration choices that affect the behavior and features of the LPD-500.

The operation of the final device depends on the build configuration. The configuration stage is where the implementer chooses the options that affect how the RTL source files are pre-processed. These options usually include or exclude logic that affects one or more of the area, maximum frequency, and features of the resulting macrocell.

Note

This Technical Reference Manual refers to implementation-defined features that are dependent on build configuration options. Optional features are only available if the appropriate build configuration options are selected.
1.7 Product revisions

This section describes the differences in functionality between product revisions of the LPD-500 Low Power Distributor.

r0p0 First release.
Chapter 2
Functional description

This chapter describes the functionality of the LPD-500.

It contains the following sections:
• 2.1 About the functions on page 2-20.
• 2.2 Interfaces on page 2-22.
• 2.3 Clocking and reset on page 2-23.
• 2.4 Parameter summary on page 2-24.
2.1 About the functions

This section describes the functional blocks in the LPD-500.

When the LPD-500 receives a request on the CTRL Q-Channel, it starts the same request on all the DEV Q-Channels, either together or in sequence. When configured as a sequencer, the LPD-500 waits for the response from each device before starting the next request. The LPD-500 waits for all devices to respond before generating the response to the Controller. The type of response that the LPD-500 generates to the Controller depends on the responses that the LPD-500 received from the devices, and whether the LPD-500 is configured as an expander or sequencer.

The LPD-500 ORs together all the device \texttt{qactive} signals to form the \texttt{ctrlqactive} output. The path from the \texttt{devqactive} signals to the \texttt{ctrlqactive} output is a combinatorial path through the design. The particular behavior of the LPD-500 depends on whether it is configured as an expander or sequencer.

The following figures show the LPD-500 configured as an expander, and as a sequencer.

Explaner

![LPD-500 expander diagram]

If all devices respond with \texttt{qacceptn} asserted, then the LPD-500 accepts the request from the Controller.

The LPD-500 denies the request from the Controller under either of the following circumstances:

- A \texttt{devqactive} becomes HIGH, between the time that all \texttt{devqreqn} signals are asserted and the time that last \texttt{devqacceptn} is asserted, when \texttt{ACTIVE_DENY} is set to \texttt{1}.
- Any \texttt{devqdeny} is asserted, after \texttt{devqreqn} is asserted.

To complete the handshake, all device channels have to assert either \texttt{devqacceptn} or \texttt{devqdeny}. If any of them assert \texttt{devqdeny}, then \texttt{ctrlqdeny} is asserted in place of \texttt{ctrlqacceptn}.
Sequencer

To power controller or clock controller

The request that is received on the CTRL interface determines the ordering of the accesses that the LPD-500 makes to the connected devices.

- When the Controller starts an entry into the quiescent state by asserting ctrlqreqn, the LPD-500 starts sending entry requests on the Device Channel$[N-1]$ (DEV$[N-1]$), where N is equal to NUM_QCHL, and decrements.
- When the Controller starts an exit from a quiescent state, that is ctrlqreqn is deasserted, the LPD-500 starts sending exit requests on DEV$[0]$ and increments.

The LPD-500 only sends an accept response to the Controller, by asserting ctrlqacceptn, when all devices have accepted the requests. If any device denies the request, by asserting devqdeny, or devqactive is asserted with ACTIVE_DENY=1, it causes the LPD-500 to stop sending any more entry requests to channels still in the Q_RUN state, and to assert the ctrlqdeny output. The behavior of the LPD-500 changes if the devqdeny for the channel generates a denial, or by any devqactive being asserted.

The response of the LPD-500 to assertion of a devqdeny signal or a devqactive signal varies in the following ways:

devqdeny
The LPD-500 returns all channels to the Q_RUN state, starting with the channel that asserted devqdeny, followed by the rest of the channels in ascending numerical order, from zero up to DEV$[N-1]$.

devqactive
The LPD-500 returns all channels to the Q_RUN state, starting with the last channel to enter the Q_STOPPED state, followed by the rest of the channels in ascending numerical order, from zero up to DEV$[N-1]$.

A channel, that has not asserted devqacceptn when devqactive is asserted, waits until devqacceptn or devqdeny asserts before it is returned to Q_RUN. The point at which this channel returns to Q_RUN might not be in sequence with the other channels.

The LPD-500 only deasserts ctrlqacceptn when all device channels have returned to the Q_RUN state and the controller has driven ctrlqreqn high.
2.2 Interfaces

The LPD-500 has at least two external Q-Channel interfaces, one for control and the others to connect to devices.

The LPD-500 has the following external interfaces:

- A single CTRL interface that is the input Q-Channel. It receives commands from a power controller, a clock controller, or another LPD-500. The LPD-500 splits these commands to distribute them to connected devices on the multiple DEV interfaces.

 The CTRL interface has the following signals:
 - `ctrlqreqn` - an active-LOW request input for a device to go into quiescence.
 - `ctrlqacceptn` - an active-LOW acknowledge output of a request for quiescence to the controller.
 - `ctrlqdeny` - an active-HIGH output indicating denial of request for quiescence.
 - `ctrlqactive` - an active-HIGH output indicating that a device has requested to exit quiescence.

- `NUM_QCHL` DEV interfaces, that are numbered `0:NUM_QCHL-1`. The DEV interfaces are the output Q-Channels that were split by the LPD-500. The DEV interfaces drive either a Q-Channel device or another LPD-500.

 Each DEV interface has the following signals, where `N` is the number of the interface:
 - `devqreqn[N]` - an active-LOW request output for a device to go into quiescence.
 - `devqacceptn[N]` - an active-LOW acknowledge input from device.
 - `devqdeny[N]` - an active-HIGH input indicating denial of request for quiescence.
 - `devqactive[N]` - an active-HIGH input indicating request for exit from quiescence.

The following figure shows the interfaces of the LPD-500.

![LPD-500 top-level diagram](image)

Figure 2-3 LPD-500 top-level diagram

Related references

2.4 Parameter summary on page 2-24.
2.3 Clocking and reset

This section describes the clock and reset signals and procedures for the LPD-500 Low Power Distributor.

2.3.1 Clocking

The LPD-500 has a single clock input, clk.

2.3.2 Reset

The LPD-500 has a single active-LOW reset, resetn, that can be asserted asynchronously, but must be deasserted synchronously, to clk.
2.4 Parameter summary

There are six configuration parameters that determine the functionality of the LPD-500.

The following table shows the configuration parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Possible settings</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQUENCER</td>
<td>0 or 1</td>
<td>0</td>
<td>0: LPD-500 configured as an expander.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: LPD-500 configured as a sequencer.</td>
</tr>
<tr>
<td>NUM_QCHL</td>
<td>2-32</td>
<td>2</td>
<td>Defines the number of DEV interfaces.</td>
</tr>
<tr>
<td>CTRL_Q_CH_SYNC</td>
<td>0 or 1</td>
<td>1</td>
<td>0: Synchronizers are not present on ctrlqreqn inputs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: Synchronizers are present on ctrlqreqn inputs.</td>
</tr>
<tr>
<td>DEV_Q_CH_SYNC</td>
<td>0 or 1</td>
<td>1</td>
<td>0: Synchronizers are not present on devqacceptn or devqdeny inputs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: Synchronizers are present on devqacceptn and devqdeny inputs.</td>
</tr>
<tr>
<td>ACTIVE_DENY</td>
<td>0 or 1</td>
<td>1</td>
<td>0: Support for denying a quiescence request using QACTIVE is not included.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: Support for denying a quiescence request using QACTIVE is included.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Synchronizers are included on devqactive inputs.</td>
</tr>
<tr>
<td>TARGET_DIRECTORY</td>
<td>A valid directory path</td>
<td>./ /</td>
<td>The path for the configured IP-XACT. It can be either an absolute path or relative to the location of the IP-XACT file.</td>
</tr>
</tbody>
</table>

Related references

2.2 Interfaces on page 2-22.
Chapter 3
Programmers model

This chapter describes the programmers model.

It contains the following sections:
• 3.1 Programmers model summary on page 3-26.
3.1 Programmers model summary

There are no user-programmable registers in the LPD-500.
Appendix A
Signal descriptions

This appendix describes the external signals of the LPD-500.

It contains the following sections:

• A.2 Q-Channel signals on page Appx-A-29.
A.1 Clock and reset signals

The following table shows the LPD-500 clock and reset signals.

Table A-1 Clock and reset signals

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Type</th>
<th>Clock</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clk</td>
<td>Input</td>
<td>-</td>
<td>Clock input.</td>
</tr>
<tr>
<td>resetn</td>
<td>Input</td>
<td>clk</td>
<td>Reset input.</td>
</tr>
</tbody>
</table>
A.2 Q-Channel signals

The following tables show the LPD-500 Q-Channel signals.

Table A-2 Control interface signals

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Type</th>
<th>Clock</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctrlqreqn</td>
<td>Input</td>
<td>Asynchronous or clk<sup>a</sup></td>
<td>Controller QREQn request for device quiescence.</td>
</tr>
<tr>
<td>ctrlqacceptn</td>
<td>Output</td>
<td>clk</td>
<td>Controller QACCEPTn acknowledge of quiescence request from device.</td>
</tr>
<tr>
<td>ctrlqdeny</td>
<td></td>
<td></td>
<td>Controller QDENY denial of quiescence request from device.</td>
</tr>
<tr>
<td>ctrlqactive</td>
<td>Asynchronous</td>
<td></td>
<td>Controller QACTIVE request from device to exit quiescence.</td>
</tr>
</tbody>
</table>

Related references

2.4 Parameter summary on page 2-24.

^a Depends on the value of parameter CTRL_Q_CH_SYNC. If CTRL_Q_CH_SYNC = 0 then clk, else Asynchronous.

^b Depends on the value of parameter DEV_Q_CH_SYNC. If DEV_Q_CH_SYNC = 0 then clk, else Asynchronous.
Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following sections:
• *B.1 Revisions* on page Appx-B-31.
B.1 Revisions

Table B-1 Issue 0000-00

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>First release</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B-2 Differences between issue 0000-00 and issue 0000-01

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added TARGET_DIRECTORY parameter</td>
<td>2.4 Parameter summary on page 2-24</td>
<td>0000-01</td>
</tr>
<tr>
<td>Corrected DEV_Q_CH_SYNC and ACTIVE_DENY default values - changed from 0 to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal names changed to lowercase</td>
<td>Throughout document</td>
<td></td>
</tr>
</tbody>
</table>

Table B-3 Differences between issue 0000-01 and issue 0000-02

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated section 1.1</td>
<td>1.1 About the LPD-500 Low Power Distributor on page 1-12</td>
<td>0000-02</td>
</tr>
</tbody>
</table>

Table B-4 Differences between issue 0000-02 and issue 0000-03

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no functional changes in this release</td>
<td></td>
<td>All revisions</td>
</tr>
</tbody>
</table>