Arm® CoreLink™ SDK-200 System Design Kit
Revision: r2p0

Technical Overview
Arm® CoreLink™ SDK-200 System Design Kit

Technical Overview

Copyright © 2017, 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Confidentiality</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000-00</td>
<td>26 June 2017</td>
<td>Non-Confidential</td>
<td>First release for r0p0 Beta</td>
</tr>
<tr>
<td>0100-00</td>
<td>26 September 2017</td>
<td>Non-Confidential</td>
<td>First release for r1p0 EAC</td>
</tr>
<tr>
<td>0200-00</td>
<td>11 July 2018</td>
<td>Non-Confidential</td>
<td>First release for r2p0 REL</td>
</tr>
</tbody>
</table>

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2017, 2018 Arm Limited (or its affiliates). All rights reserved.

110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-20349
Confidentiality Status
This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status
The information in this document is Final, that is for a developed product.

Web Address
http://www.arm.com
Contents

Arm® CoreLink™ SDK-200 System Design Kit

Technical Overview

<table>
<thead>
<tr>
<th>Preface</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>About this book</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>SDK-200 overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>About the SDK-200</td>
</tr>
<tr>
<td>1.2</td>
<td>Product deliverables</td>
</tr>
<tr>
<td>1.3</td>
<td>Compliance</td>
</tr>
<tr>
<td>1.4</td>
<td>Documentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Functional overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Supported processors</td>
</tr>
<tr>
<td>2.2</td>
<td>CoreLink Subsystem for Embedded</td>
</tr>
<tr>
<td>2.3</td>
<td>Cortex-M System Design Kit</td>
</tr>
<tr>
<td>2.4</td>
<td>Cortex-M0 and M0+ System Design Kit</td>
</tr>
<tr>
<td>2.5</td>
<td>SIE-200 System IP for Embedded</td>
</tr>
<tr>
<td>2.6</td>
<td>CoreLink CG092 AHB Flash Cache</td>
</tr>
<tr>
<td>2.7</td>
<td>LPD-500 Low Power Distributor</td>
</tr>
<tr>
<td>2.8</td>
<td>Real Time Clock</td>
</tr>
<tr>
<td>2.9</td>
<td>True Random Number Generator</td>
</tr>
</tbody>
</table>
Appendix A
Revisions
A.1 Revisions .. Appx-A-32
Preface

This preface introduces the Arm® CoreLink™ SDK-200 System Design Kit Technical Overview.

It contains the following:

• About this book on page 7.
• Feedback on page 9.
About this book

This book is for the Arm® CoreLink™ SDK-200 System Design Kit (SDK-200). It describes the hardware and software for the system.

Product revision status

The \texttt{rm}p\texttt{n} identifier indicates the revision status of the product described in this book, for example, r1p2, where:

\texttt{rm} \quad Identifies the major revision of the product, for example, r1.

\texttt{pn} \quad Identifies the minor revision or modification status of the product, for example, p2.

Intended audience

This book is written for hardware or software engineers who want an overview of the functionality in the CoreLink™ SDK-200 System Design Kit.

Using this book

This book is organized into the following chapters:

\textbf{Chapter 1 SDK-200 overview}

This chapter introduces the Arm CoreLink SDK-200 System Design Kit (SDK-200).

\textbf{Chapter 2 Functional overview}

This chapter describes the IP products included in the SDK-200 license.

\textbf{Appendix A Revisions}

This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from the generally accepted meaning.

See the \textit{Arm® Glossary} for more information.

Typographic conventions

\emph{italic}

Introduces special terminology, denotes cross-references, and citations.

\textbf{bold}

Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.

\texttt{monospace}

Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.

\underline{\texttt{monospace}}

Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.

\texttt{monospace \textit{italic}}

Denotes arguments to monospace text where the argument is to be replaced by a specific value.

\texttt{monospace \textbf{bold}}

Denotes language keywords when used outside example code.
Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the *Arm® Glossary*. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Additional reading

This section lists publications by Arm and by third parties.

See [Infocenter](https://www.arm.com), for access to Arm documentation.

Arm publications

This book contains information that is specific to this product. See the following documents for other relevant information:

The following confidential books are only available to licensees or require registration with Arm:

- *Arm® CoreLink™ SSE-050 Configuration and Integration Manual* (100919).
- *Arm® CoreLink™ SSE-200 Subsystem for Embedded Configuration and Integration Manual* (100224).

Note

- See www.arm.com/cmsis for embedded software development resources including the *Cortex Microcontroller Software Interface Standard* (CMSIS).
- See Arm Mbed” platform, https://www.mbed.com for information on the Mbed tools including Mbed OS and online tools.
Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:
• The title Arm CoreLink SDK-200 System Design Kit Technical Overview.
• The number 101063_0200_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.
Chapter 1
SDK-200 overview

This chapter introduces the Arm CoreLink SDK-200 System Design Kit (SDK-200).

It contains the following sections:

- 1.1 About the SDK-200 on page 1-11.
- 1.2 Product deliverables on page 1-13.
- 1.3 Compliance on page 1-14.
- 1.4 Documentation on page 1-15.
1.1 About the SDK-200

The SDK-200 provides a subsystem architecture, a reference platform, and a collection of IP products that can be used to create a secure IoT system. To provide this functionality, the SDK-200 product grants licenses to the following subsystem and component IP products:

CoreLink SSE-050 Subsystem for Embedded

The SSE-050 provides a starting point for a product in the Internet of Things (IoT) and embedded market segments. The SSE-050 provides a process and technology agnostic reference, pre-integrated, validated, hardware and software subsystem for Arm Cortex-M3 processors that can be extended to provide an IoT endpoint system.

CoreLink SSE-200 Subsystem for Embedded

The SSE-200 provides a high-performance and low-power computing subsystem for Arm Cortex-M33 processors. It can be the foundation of a secure system because of system-level support for TrustZone technologies.

Cortex-M System Design Kit

The Cortex-M System Design Kit provides an example system for the Arm Cortex-M processors and reusable AMBA AHB-Lite and APB components for low-power designs.

Cortex-M0 and M0+ System Design Kit

The Cortex-M0 and Cortex-M0+ System Design Kit provides an example system-level design for the Arm Cortex-M0 and Cortex-M0+ processors and reusable AMBA components for system-level development.

CoreLink SIE-200 System IP for Embedded

The SIE-200 product is a collection of interconnect, peripheral, and TrustZone controller components for use with a processor that complies with the Armv8-M processor architecture.

CoreLink LPD-500 Low Power Distributor

The LPD-500 is a standalone configurable component to distribute Q-Channel interfaces to multiple devices and subsystems. Q-Channels are used to manage clock gating and power control.

CoreLink CG092 AHB Flash Cache

The CG092 is an instruction cache that is designed to be instantiated between the bus interconnect and the embedded Flash (eFlash) controller.

PrimeCell Real Time Clock

The Real Time Clock (RTC) is an AMBA slave module that connects to the Advanced Peripheral Bus (APB).

The RTC can be used to provide a basic alarm function or long time base counter. This is achieved by generating an interrupt signal after counting for a programmed number of cycles of a real-time clock input. Counting in one second intervals is achieved by use of a 1Hz clock input to the RTC.

TrustZone True Random Number Generator

The True Random Number Generator (TRNG) provides an assured level of entropy (as analyzed by Entropy Estimation logic). The output from the TRNG can be used to seed deterministic random bit generators.

1.1.1 Using the SDK IP products

The SDK-200 licensed IP can be used in the following ways:
• Use the CoreLink SSE-050 or SSE-200 subsystem as a verified foundation for your own IoT solution that is based around the Cortex-M3 or Cortex-M33 processors, respectively.

Use the SIE-200 components to add bus and controller IP to create secure TrustZone systems.
• Use the Cortex-M System Design Kit (CMSDK) and the example system as a starting point for your own IoT solution that is based around the Cortex-M0, Cortex-M0+, Cortex-M3, or Cortex-M4 processors.
• Use the Cortex-M0 and Cortex-M0+ System Design Kit and the example system as a foundation for your own IoT solution that is based around the Cortex-M0 or Cortex-M0+ processors.
• Use the system IP provided with the SSE-050, SSE-200, CMSDK, LPD-500, CG092, or the SIE-200, and your own IP to create a custom solution. You can use the example systems and software libraries as a reference for your system solution.

——— Note ————

• The SSE-050 or SSE-200 and CMSDK build scripts include interconnections to a processor, but a processor must be separately licensed and installed.

Using the SSE-200 also requires a license for the CoreSight™ SoC-400M product bundle (TM150).
• See the Arm® CoreLink™ SDK-200 Release Note for details about how to download and install the SDK-200 components that you require.
1.2 Product deliverables

The CoreLink SDK-200 product bundle (BP310) does not have hardware or software deliverables. Its subsystems and IP component products include these deliverables.

The hardware deliverables must be downloaded separately for the following IP products that are included in the SDK-200 license:

- CoreLink SSE-050 Subsystem for Embedded (CG063).
- CoreLink SSE-200 Subsystem for Embedded (CG062).
- CoreLink SIE-200 System IP for Embedded (BP300).
- Cortex-M System Design Kit (BP210).
- Cortex-M0 and M0+ System Design Kit (BP200).
- CoreLink LPD-500 Low Power Distributor (PL408).
- CoreLink CG092 AHB Flash Cache (CG092).
- PrimeCell Real Time Clock (PL031).
- TrustZone True Random Number Generator (CC003).

See the Arm® CoreLink™ SDK-200 Release Note for the component versions.
1.3 Compliance

See the Technical Reference Manuals for more details of the product’s compliance to the following specifications:

- Arm architecture.
- CoreSight Debug.
- Advanced Microcontroller Bus Architecture.
1.4 Documentation

The following documents are supplied with the CoreLink SDK-200 product bundle (BP310):

Technical Overview

The Technical Overview (TO) describes the functionality of the SDK-200 System Design Kit.

Release Note

The Release Note describes download and installation instructions for the IP products included in the SDK-200.

Note

- The separately downloaded product bundles also contain documentation such as Technical Reference Manuals or Configuration and Integration Manuals.
- See the individual product bundles for details of what documentation is provided for that IP bundle.
Chapter 2
Functional overview

This chapter describes the IP products included in the SDK-200 license.

It contains the following sections:

- 2.1 Supported processors on page 2-17.
- 2.2 CoreLink Subsystem for Embedded on page 2-18.
- 2.3 Cortex-M System Design Kit on page 2-21.
- 2.4 Cortex-M0 and M0+ System Design Kit on page 2-24.
- 2.5 SIE-200 System IP for Embedded on page 2-26.
- 2.6 CoreLink CG092 AHB Flash Cache on page 2-27.
- 2.8 Real Time Clock on page 2-29.
- 2.9 True Random Number Generator on page 2-30.
2.1 **Supported processors**

The following table lists the processors supported by the products in the CoreLink SDK-200 bundle used to create a secure IoT system.

<table>
<thead>
<tr>
<th>Processor</th>
<th>CM0SDK</th>
<th>CMSDK</th>
<th>LPD-500</th>
<th>SIE-200 System IP</th>
<th>SSE-050 Subsystem</th>
<th>SSE-200 Subsystem</th>
<th>RTC</th>
<th>TRNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex-M0</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cortex-M0+</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cortex-M23</td>
<td>-</td>
<td>Limited(^a)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Limited(^b)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cortex-M3</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Yes(^c)</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cortex-M4</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Yes(^c)</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cortex-M33</td>
<td>-</td>
<td>Limited(^d)</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cortex-M7</td>
<td>-</td>
<td>Limited(^d)</td>
<td>Limited(^d)</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(^a\) Does not propagate all AHB5 attributes and is not security aware.

\(^b\) Enabled by subsystem modification rights.

\(^c\) Enabled by Cortex-M3/Cortex-M4 AHB5 Adapter component, which is part of SIE-200.

\(^d\) Enabled by using the Cortex-M7 AHB bus and/or an AXI2AHB converter.
2.2 CoreLink Subsystem for Embedded

The Arm CoreLink SSE-050 and SSE-200 Subsystem for Embedded are subsystems that provide a starting point for a product in the *Internet of Things* (IoT) and embedded market segments.

The SSE-050 subsystem delivers a process and technology agnostic reference, pre-integrated, validated, hardware and software subsystem that can be extended to provide an IoT endpoint system.

The SSE-200 subsystem drives system architecture and software standardization, and was developed to provide a high-performance computing subsystem that encompasses leading-edge Cortex-M and TrustZone technologies.

The SSE solution consists of hardware, software, and software tools to enable the rapid development of IoT *System on Chip* (SoC) solutions.

2.2.1 CoreLink SSE-050 Subsystem for Embedded

The SSE-050 subsystem contains the following components:

- A Cortex-M3 processor.
- Configurable Debug and Trace.
- Multilayer AMBA AHB-Lite interconnect.
- Memory system.
- Two APB timers.

The following figure shows the SSE-050 subsystem, with other IP, in an example design.

2.2.2 CoreLink SSE-200 Subsystem for Embedded

The SSE-200 subsystem provides the following pre-assembled elements to use as the basis of an IoT SoC:
- Two Cortex-M33 processors that must be separately licensed.
- AMBA AHB5 bus matrix for internal and expansion buses.
- System controller.
- I-cache.
- CoreSight debug and trace that must be separately licensed.
- CoreLink SIE-200 and CMSDK components.
- SRAM memory.
- Power, clock, and reset control infrastructure.

Note

- For details of the separately licensed Cortex-M33 processor, see the *Arm® Cortex®-M33 Processor Technical Reference Manual*.
- For details of the SIE-200 components, see the *Arm® CoreLink™ SIE-200 Technical Reference Manual*.
- The SSE-200 is complemented by software libraries that are integrated with the Mbed operating system.
- The provided system components only form part of the finished SoC and Arm expects system designers to extend and customize the subsystem for their application requirements.

The following figure shows a block diagram of the SSE-200 elements:
2.2.3 Subsystem for Embedded software

Application processor firmware, which is available separately, consists of the code that is required to boot the subsystem up to the point where the OS execution starts. Contact your Arm representative for details on the software and its location.

The firmware contains:

- *Cortex Microcontroller Software Interface Standard* (CMSIS) compliant drivers.
- Flash programming support code, which is separate from Mbed OS.
- Separately ported Mbed OS that includes uVisor ported onto the SSE-050 and SSE-200 systems.
- Execution support for the SSE-200 *Fixed Virtual Platform* (FVP) and RTL simulators.
- Support for SSE-200 on MPS2 FPGA Development Platform.
- Mbed OS driver support and code, for example I/O peripherals.
- Code that is required to load Mbed from boot media and set up the initial security environment.
- Support for system security components, including memory protection controllers.
- Support for runtime processor power state control.
2.3 Cortex-M System Design Kit

The Cortex-M System Design Kit helps you design products using Arm Cortex-M3 and Cortex-M4 processors.

The design kit contains the following:

• A selection of AHB-Lite and APB components, including several peripherals such as GPIO, timers, watchdog, and UART.
 These components are used in the CMSDK example system, but you can also use the components to create your own custom system.
• An example system for supported processor products.
• Example synthesis scripts for the example system.
• Example compilation and simulation scripts for the Verilog environment that supports ModelSim, VCS, and NC Verilog.
• Example code for software drivers.
• Example test code to demonstrate various operations of the systems.
• Example compilation scripts and example software project files that support:
 — Arm Development Studio 5 (DS-5).
 — Arm RealView Development Suite.
 — Keil® Microcontroller Development Kit (MDK).
 — GNU tools for Arm embedded processors (Arm GCC).
• Documentation including:
 — Arm® Cortex®-M0 and Cortex®-M0+ System Design Kit Example System Guide.

This section contains the following subsections:

• 2.3.1 Example system on page 2-21.
• 2.3.2 Components on page 2-22.
• 2.3.3 Cortex-M Software Design Kit software on page 2-22.

2.3.1 Example system

The following figure shows the block diagram of the CMSDK example system:
2.3.2 Components

The CMSDK example system consists of the following components and models:

- Basic AHB-Lite components.
- APB components.
- Advanced AHB-Lite components.
- Behavioral memory models.

2.3.3 Cortex-M Software Design Kit software

The Cortex-M System Design Kit includes the following software:

- CMSIS-compliant drivers.
- Device-specific header files, startup code, and example drivers including retargeting code for the `printf()` and `puts()` functions.
- Platform hardware adaptation layer code that is required in addition to the open-source code and generic Cortex-M processor header files.
• Mbed OS driver support.
 Extra Cortex-M code is available on the Mbed website.
• Shell scripts to sync, build, and run the software.
2.4 **Cortex-M0 and M0+ System Design Kit**

The Cortex-M0 and Cortex-M0+ System Design Kit provides:

- An example system-level design for the Arm Cortex-M0 and Cortex-M0+ processors.
- Reusable AMBA components for system-level development from the CMSDK.

For information on the AMBA components that the design kit uses, see the *Arm® Cortex®-M System Design Kit Technical Reference Manual*.

This section contains the following subsections:

- 2.4.1 *About the example system* on page 2-24.
- 2.4.2 *Cortex-M0 and Cortex-M0+ software* on page 2-25.

2.4.1 **About the example system**

The *Arm Cortex-M0 and M0+ System Design Kit Example System Guide* describes an example system for the Cortex-M0 and Cortex-M0+ processors.

Figure 2-3 CMSDK example system on page 2-22 shows the example system block diagram. The following figure shows the testbench of the example system.
The example system is a simple microcontroller design that contains the following:

- A single Cortex-M0 or Cortex-M0+ processor.
- Internal program memory.
- SRAM data memory.
- Boot loader.
- The following peripherals:
 - Several timers.
 - General-Purpose input/output (GPIO).
 - Universal Asynchronous Receiver Transmitter (UART).
 - Watchdog timer.
- Debug connection.

Note

The optional µDMA Controller (PL230) is not included in the SDK-200 license and, if instantiated, must be licensed separately. See the Arm® PrimeCell µDMA Controller (PL230) Technical Reference Manual for more information.

2.4.2 Cortex-M0 and Cortex-M0+ software

The Cortex-M0 and M0+ System Design Kit products include the following software:

- CMSIS-compliant drivers.
- Device-specific header files, startup code, and example drivers including retargeting code for the `printf()` and `puts()` functions.
- Platform hardware adaptation layer code that is required in addition to the open-source code and generic Cortex-M processor header files.
- Mbed OS driver support.

Extra Cortex-M0 and Cortex-M0+ code is available on the Mbed website.
- Shell scripts to sync, build, and run the software.
2.5 SIE-200 System IP for Embedded

The CoreLink SIE-200 System IP for Embedded product is a collection of interconnect, peripheral, and TrustZone controller components for use with a processor that complies with the Armv8-M processor architecture and the AMBA 5 AHB5 protocol.

The SIE-200 components are used in the SSE-200 product, but you can also use the SIE-200 components to create your own custom system.

The CoreLink SIE-200 System IP for Embedded consists of the following components and models that support the AHB5 standard:

- AHB5 system components.
- AHB5 bridge components.
- TrustZone protection controllers.
- Verification components.
2.6 CoreLink CG092 AHB Flash Cache

The CG092 AHB Flash Cache is an instruction cache that is instantiated between the bus interconnect and the eFlash controller.

The CG092 is a simple cache for on-chip embedded Flash (eFlash). The CG092 design is optimized for fetching Cortex-M3 or Cortex-M4 instructions directly from an eFlash. The main benefit of the CG092 is improved power efficiency, but there are also improvements in code fetching performance.

Note

The AHB Flash Cache can also be used with external eFlash if the Flash controller is modified accordingly.

The following figure shows the connections in a typical Flash subsystem.

![Figure 2-5 Example eFlash implementation](image-url)
2.7 LPD-500 Low Power Distributor

The LPD-500 Low Power Distributor is a standalone configurable component to distribute Q-Channel interfaces to multiple devices and subsystems.

Q-Channels are used to manage quiescence, in components of the system that allow the clock to be gated off or power to be removed, to save power when not operational.

The LPD-500 can be used as an expander or sequencer. The following figure shows its use as an expander:

![LPD-500 expander connections](image_url)

Figure 2-6 LPD-500 expander connections
2.8 **Real Time Clock**

The *Real Time Clock* (RTC) is an AMBA slave module that connects to the *Advanced Peripheral Bus* (APB).

The following figure shows the RTC block diagram.

The RTC can be used to provide a basic alarm function or long time base counter. This is achieved by generating an interrupt signal after counting for a programmed number of cycles of a real-time clock input. Counting in one second intervals requires a 1Hz clock input to the RTC.
2.9 True Random Number Generator

The True Random Number Generator (TRNG) provides an assured level of entropy (as analyzed by Entropy Estimation logic). The output from the TRNG can be used to seed deterministic random bit generators.

The following figure shows the TRNG.

![Diagram of TRNG hardware overview](Figure 2-8 TRNG hardware overview)
Appendix A
Revisions

This appendix describes the technical changes between released issues of this book. It contains the following section:

• *A.1 Revisions* on page Appx-A-32.
A.1 Revisions

This appendix describes technical changes between released issues of this book.

Table A-1 Issue 0000-00

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>First release</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table A-2 Differences between issue 0000-00 and issue 0100-00

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsystem for Embedded update (SSE-050 and SSE-200)</td>
<td>• 1.1 About the SDK-200 on page 1-11</td>
<td>r1p0 EAC release</td>
</tr>
<tr>
<td></td>
<td>• 1.2 Product deliverables on page 1-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.2 CoreLink Subsystem for Embedded on page 2-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.2.1 CoreLink SSE-050 Subsystem for Embedded on page 2-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.2.2 CoreLink SSE-200 Subsystem for Embedded on page 2-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2.2.3 Subsystem for Embedded software on page 2-20</td>
<td></td>
</tr>
</tbody>
</table>

Table A-3 Differences between issue 0100-00 and issue 0200-00

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added reference to Release Note.</td>
<td>• 1.1.1 Using the SDK IP products on page 1-11</td>
<td>All revisions</td>
</tr>
<tr>
<td>Minor editorial and technical changes throughout document.</td>
<td>-</td>
<td>All revisions</td>
</tr>
</tbody>
</table>