Integrating an External Bus Interface (PL220) with PL3xx Memory Controllers

Application Note
Integrating an External Bus Interface (PL220) with PL3xx Memory Controllers

Application Note

Copyright © 2007 ARM Limited. All rights reserved.

Release Information

Table 1 Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>Issue</th>
<th>Confidentiality</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 May 2007</td>
<td>A</td>
<td>Non-Confidential</td>
<td>First release</td>
</tr>
<tr>
<td>15 October 2007</td>
<td>B</td>
<td>Non-Confidential</td>
<td>Addition of Chip-select timing on page 8</td>
</tr>
</tbody>
</table>

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
1 About this document

This application note describes how to connect an External Bus Interface (EBI) with:

- a PL34x series Dynamic Memory Controller (DMC)
- a PL35x series Static Memory Controller (SMC).

The application note also contains the following sections:

- Using EBIGNT on page 4
- Synchronization logic on page 5
- Clock switching on page 7
- Chip-select timing on page 8.

1.1 Reference

This application note refers to the ARM PrimeCell External Bus Interface (PL220) Technical Reference Manual (ARM DDI 0249).

1.2 Terms and abbreviations

Table 2 lists the terms and abbreviations that this application note uses.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC</td>
<td>Dynamic Memory Controller</td>
</tr>
<tr>
<td>EBI</td>
<td>External Bus Interface</td>
</tr>
<tr>
<td>SMC</td>
<td>Static Memory Controller</td>
</tr>
</tbody>
</table>

1.3 Feedback

If you have any comments on this application note, please send e-mail to errata@arm.com giving:

- the document title
- the document number
- the page number(s) to which your comments refer
- an explanation of your comments.

General suggestions for additions and improvements are also welcome.
Using EBIGNT

Unlike older PrimeCells, the PL3xx memory controllers do not register EBIGNT. This can help to reduce the latency every time the memory bus is granted to a different memory interface.

However, if the EBI is being run at a higher frequency than the memory interface then you must ensure that the rising edge of EBIGNT is synchronized to the memory clock.

The handshaking between the EBI and the memory controller consists of a three-wire interface:

- EBIREQ
- EBIGNT
- EBIBACKOFF.

The EBI output, EBIGNT, is referred as EBIGRANT in PL3xx memory controllers.
3 Synchronization logic

The logic shown in Figure 1 can be used to synchronize EBIGNT to the memory clock.

![Figure 1 Simple EBIGNT synchronization logic](image1)

This ensures that the rising edge of EBIGNT is correctly synchronized to mclk but leaves the falling edge unchanged and therefore prevents two grants being asserted at the same time.

The logic in Figure 1 will support dynamic changing of mclk but will introduce an extra cycle of latency when the EBI is running on the same clock as the memory interface.

Similar logic, but excluding the AND gate, can be used to synchronize the EBIBACKOFF signal from the PL3xx series to the EBI. The AND gate is not needed as it is the falling edge on EBIBACKOFF that must be synchronized.

Figure 2 shows how the extra cycle of latency can be removed using a general purpose I/O signal, bypass, such as one of the user_config signals of PL3xx memory controller.

![Figure 2 EBIGNT synchronization logic with user signal](image2)

The bypass control signal must meet the following conditions:

1. The bypass signal must only be asserted when the EBI and the memory interface are running at the same frequency.
2. When the mclk frequency is being slowed down from the same frequency as EBICLK then bypass must be LOW before the last rising edge when EBICLK matches mclk. See Figure 3 and Figure 4.
3. When the mclk frequency is being increased to EBICLK then bypass can be asserted at any point after the last rising edge of mclk before EBICLK matches mclk. See Figure 5 on page 6 and Figure 6 on page 6.

![Figure 3 bypass signal timing, reducing frequency 1](image3)

![Figure 4 bypass signal timing, reducing frequency 2](image4)
Figure 5 bypass signal timing, increasing frequency 1

Figure 6 bypass signal timing, increasing frequency 2
4 Clock switching

For the SMC (PL350 series), if the bypass signal is kept LOW all the time then it is possible to change clocks as desired if the following conditions are met:

• the clocks remain synchronous.
• EBICLK always remains as the fastest of the memory clocks
• the memory timing parameters are never violated.

The same applies when using bypass logic to remove the extra cycle of latency provided that it obeys the rules stated in this application note.

For the DMC (PL340 series), the EBIBACKOFF and EBIGNT synchronization clocks can also be randomly changed with the same conditions provided that there is no DLL in the system to lose lock.
5 Chip-select timing

If two memory interfaces belonging to the same memory controller or to different ones operate at different frequencies, \texttt{mclk1} and \texttt{mclk2}, then \texttt{EBICLK} runs at the fastest frequency. Figure 7 shows how the chip-selects of the memory interfaces are asserted and deasserted with respect to the EBI protocol timing.

![Figure 7 Chip select timing for different memory interface clock speeds](#)

\textbf{Note}\hspace{1cm}

Memory interface 2 has the bypass logic included. Its timing reflects this.