Juno r2 ARM® Development Platform
SoC
Revision: r2p0

Technical Overview
Juno r2 ARM Development Platform SoC
Technical Overview

Copyright © 2014, 2015. All rights reserved.

Release Information

The following changes have been made to this book.

<table>
<thead>
<tr>
<th>Date</th>
<th>Issue</th>
<th>Confidential</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 July 2014</td>
<td>A</td>
<td>Non-Confidential</td>
<td>First release, for r0p0</td>
</tr>
<tr>
<td>01 May 2015</td>
<td>B</td>
<td>Non-Confidential</td>
<td>Second release, for r1p0</td>
</tr>
<tr>
<td>16 December 2015</td>
<td>C</td>
<td>Non-Confidential</td>
<td>Third release, for r2p0</td>
</tr>
</tbody>
</table>

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2014, 2015. All rights reserved. ARM Limited or its affiliates.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
Contents

Juno r2 ARM Development Platform SoC Technical Overview

Preface

About this book ... vi
Feedback .. ix

Chapter 1 Introduction
1.1 Purpose ... 1-2
1.2 Components ... 1-3
1.3 Software development .. 1-4
1.4 Compliance ... 1-5

Chapter 2 Hardware Functional Description
2.1 Functional overview ... 2-2
2.2 Trusted Execution Environment (TEE) ... 2-7
2.3 Power control and thermal management .. 2-8
2.4 ADP motherboard specification ... 2-10

Chapter 3 Software Functional Description

Appendix A Hardware Components
A.1 ADP SoC .. A-2
A.2 ADP motherboard ... A-3

Appendix B Revisions
Preface

This preface introduces the Juno ARM® Development Platform SoC Technical Overview. It contains the following sections:

• About this book on page vi.
• Feedback on page ix.
About this book

This book is for the Juno ARM Development Platform (ADP) SoC. It provides a high-level overview of the ADP.

Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r0p0, where:

- \(\text{rm} \) Identifies the major revision of the product, for example, r0.
- \(\text{pn} \) Identifies the minor revision or modification status of the product, for example, p0.

Intended audience

This book is written for software engineers who want to work with an ARM® reference platform. It describes the high-level functionality of the ADP SoC.

Using this book

This book is organized into the following chapters:

- **Chapter 1 Introduction**
 Read this for an introduction to the ADP SoC, a description of its features, and the components that it contains.

- **Chapter 2 Hardware Functional Description**
 Read this for a description of the major hardware interfaces, the hardware components of the ADP, and how they operate.

- **Chapter 3 Software Functional Description**
 Read this for a description of the ADP software.

- **Appendix A Hardware Components**
 Read this for a detailed description of the hardware components that the ADP SoC and the motherboard contain.

- **Appendix B Revisions**
 Read this for a description of the technical changes between released issues of this book.

Glossary

The *ARM Glossary* is a list of terms used in ARM documentation, together with definitions for those terms. The *ARM Glossary* does not contain terms that are industry standard unless the ARM meaning differs from the generally accepted meaning.

Conventions

Conventions that this book can use are described in:

- **Typographical conventions**.
- **Timing diagrams**.
- **Signals on page viii**.

Typographical conventions

The following table describes the typographical conventions:

<table>
<thead>
<tr>
<th>Style</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>italic</td>
<td>Introduces special terminology, denotes cross-references, and citations.</td>
</tr>
<tr>
<td>bold</td>
<td>Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in descriptive lists, where appropriate.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Denotes text that you can enter at the keyboard, such as commands, file and program names, and source code.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of the full command or option name.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>bold Denotes language keywords when used outside example code.</td>
</tr>
<tr>
<td><code><and></code></td>
<td>Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example: MRC p15, 0 <Rd>, <CRn>, <CRm>, <0pcde_2></td>
</tr>
<tr>
<td>SMALL CAPITALS</td>
<td>Used in body text for a few terms that have specific technical meanings, that are defined in the ARM glossary. For example, IMPLEMENTATION DEFINED, UNKNOWN, and UNPREDICTABLE.</td>
</tr>
</tbody>
</table>

Timing diagrams

The figure named *Key to timing diagram conventions* explains the components used in timing diagrams. Variations, when they occur, have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded area at that time. The actual level is unimportant and does not affect normal operation.

![Key to timing diagram conventions](image-url)
Timing diagrams sometimes show single-bit signals as HIGH and LOW at the same time and they look similar to the bus change shown in Key to timing diagram conventions on page vii. If a timing diagram shows a single-bit signal in this way then its value does not affect the accompanying description.

Signals

The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:
- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lower-case n
At the start or end of a signal name denotes an active-LOW signal.

Additional reading

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for other relevant information:

- *ARM® Versatile™ Express Juno r2 Development Platform (V2M-Juno r2) Technical Reference Manual* (ARM 100114)

- *Juno ARM® Development Platform Getting Started Guide* (ARM DUI 0928)

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

- The product name.
- The product revision or version.
- An explanation with as much information as you can provide. Include symptoms and diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

- The title.
- The number, ARM DTO 0038C.
- The page numbers to which your comments apply.
- A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented document when used with any other PDF reader.
Chapter 1
Introduction

This chapter introduces the Juno r2 ARM® Development Platform (ADP) SoC. It contains the following section:

- *Purpose* on page 1-2.
- *Components* on page 1-3.
- *Software development* on page 1-4.
- *Compliance* on page 1-5.
1.1 Purpose

The ADP SoC is a development platform for:
- ARMv8 AArch64 and AArch32 compute.
- big.LITTLE™ Multi-Processing (MP).
- Graphics Processing Unit (GPU) compute.
- 3D Graphics.
- Control and management of:
 - Security.
 - Power.
 - Thermal.

The ADP SoC enables you to develop software and tooling for ARMv8 AArch64 and AArch32.
1.2 Components

The ADP SoC consists of the following:

- A standalone development motherboard, ARM® Versatile™ Express Juno Development Platform V2M-Juno r2, instantiating the ADP SoC fabricated in TSMC28HPM.
- A Software Development Kit (SDK) that supports each hardware platform and contains the following:
 - ADP AArch64 firmware with standardized Application Programming Interfaces (APIs).
 - AArch64 Linux kernel with big.LITTLE MP support.
 - AArch32 and AArch64 Linux user space example.
- DS-5 tool support.

The processor clusters contain the following fully coherent processor clusters:

- Dual core Cortex®-A72 processor cluster.
- Quad core Cortex-A53 processor cluster.

The GPU cluster contains an I/O-coherent Mali™-T624 Series GPU.

The compute platform also contains a Cortex-M3 System Control Processor (SCP) for power control and thermal management.

External interfaces include:

- External memory capability includes DDR3-1600 dual channel striped memories.
- USB2 and a custom SoC to Field Programmable Gate Array (FPGA) prototyping extension interface.
- A Peripheral Component Interconnect Express (PCIe) Gen2.0 four lanes, Root Port, and PHY, that has both I/O coherent and non-coherent modes.
1.3 **Software development**

The ADP delivers heterogeneous compute to software developers including big.LITTLE64 and General-Purpose computing on Graphics Processing Units (GPGPU) compute, for example:

- OpenCL.
- Direct Compute.
- OpenGL-ES.
- Direct-X graphics.
- *Trusted Execution Environment* (TEE) integration.
- Advanced power control and thermal management.
1.4 Compliance

The ADP conforms to ARM Platform Design Documents (PDDs) and white paper guidance documents, in particular, the following:

- Trusted Base System Architecture 1 (ARM DEN 0007).
- Trusted Board Boot Requirements (ARM DEN 0006).
- Power State Coordination Interface (ARM DEN 0022).
- Principles of ARM® Memory Maps White Paper (ARM DEN 0001).

This document provides a technical overview of the ADP design and associated software deliverables for the platform.
Chapter 2
Hardware Functional Description

This chapter describes the functionality of the \textit{Juno r2 ARM® Development Platform} (ADP) SoC hardware.

It contains the following sections:

• \textit{Functional overview} on page 2-2.
• \textit{Trusted Execution Environment (TEE)} on page 2-7.
• \textit{Power control and thermal management} on page 2-8.
• \textit{ADP motherboard specification} on page 2-10.
2.1 Functional overview

Figure 2-1 shows a block diagram of the ADP SoC.

The main components are as follows:

- **Cortex-A72 processor cluster subsystem** on page 2-3.
- **Cortex-A53 processor cluster subsystem** on page 2-3.
- **Graphics subsystem** on page 2-3.
- **System Control Processor (SCP) subsystem** on page 2-4.
- **Interconnects and on-system memory** on page 2-4.
- **System Memory Management Unit (SMMU)** on page 2-4.
- **Generic Interrupt Controller (GIC)** on page 2-4.
- **Memory subsystem** on page 2-5.
- **Peripheral Component Interconnect Express (PCIe)** on page 2-5.
- **USB 2.0 Enhanced Host Controller Interface (EHCI)** on page 2-5.
- **Direct Memory Access (DMA)** on page 2-5.
- **High Definition Liquid Crystal Display (HDLCD) controllers** on page 2-5.
- **Static Memory Controller (SMC)** on page 2-6.
- **Universal Asynchronous Receiver-Transmitter (UART)** on page 2-6.
- **I2C** on page 2-6.
- **Thin Links SoC to FPGA prototyping interface** on page 2-6.
- **CoreSight™** on page 2-6.
2.1.1 Cortex-A72 processor cluster subsystem

The Cortex®-A72 processor subsystem consists of the following:

- ARMv8 dual core Cortex-A72 cluster that is configured with an AMBA®4 ACE interface and 2MB L2 cache.
- ARM® CoreLink™ ADB-400 AMBA® Domain Bridge to enable Dynamic Voltage and Frequency Scaling (DVFS).

2.1.2 Cortex-A53 processor cluster subsystem

The Cortex-A53 processor subsystem consists of the following:

- ARMv8 quad core Cortex-A53 cluster that is configured with an AMBA4 ACE interface and 1MB L2 cache.
- CoreLink ADB-400 asynchronous bridge to enable DFVS.

2.1.3 Graphics subsystem

The Mali™-T624 Series Graphics Processing Unit (GPU) is a high-performance hardware accelerator for 2D and 3D graphics. The GPU subsystem consists of the following:

- Mali-T624 Series GPU containing:
 — Four shader cores.
 — A hierarchical tiler.
 — A Power-Management Unit (PMU).
- A job manager that distributes workloads to the four shader cores.
- A Memory-Management Unit (MMU) that performs address translation of data reads and writes from components in the system.
- A CoreLink ADB-400 asynchronous bridge to enable DFVS.

The Mali-T624 Series GPU is configured with 128KB L2 RAM and an AMBA4 ACE-Lite interface.

The GPU and its associated software are compatible with the following graphics standards:

- OpenGL ES 1.1 and 2.0.
- OpenCL 1.1 full profile.
- EGL 1.4.
- Renderscript compute.
- DirectX 11 feature level 9_1, 9_3 through DX9 DDI, including Direct3D.
- DirectX 11 full-feature through DX10/11 DDI:
 — Direct3D.
 — DirectCompute.
2.1.4 System Control Processor (SCP) subsystem

A Cortex-M3 processor controls and manages the SoC. The SCP:
- Controls clocks and resets.
- Is responsible for power state transitions for the power regions in the SoC.
- Has direct control over the Power-Management Integrated Circuit (PMIC) on the board.

The Operating System (OS) can send power-management commands to the SCP using a hardware Message Handling Unit (MHU).

2.1.5 Interconnects and on-system memory

The ADP contains a CoreLink CCI-400 Cache Coherent Interconnect that provides:
- Full coherency between the processor clusters.
- I/O coherency between the GPU and processor clusters.

A 128-bit I/O coherent slave and master interface is extended from the coherent interconnect using CoreLink NIC-400 Network Interconnect components and connected to peripherals such as Direct Memory Access (DMA) and interchip interconnect.

The following static RAMs are instantiated for the application processors:
- 128KB trusted.
- 16KB non-trusted.

The following ROMs are instantiated for the application processors:
- 128KB trusted.
- 16KB non-trusted.

The ROM code is fully committed at the time of manufacture. However, it is possible to override the internal code of both ROMs for development and debug purposes.

2.1.6 System Memory Management Unit (SMMU)

Individual ARM CoreLink MMU-401 System Memory Management Unit or ARM CoreLink MMU-400 System Memory Management Unit components connect all non-processor masters such as the following, to the ARM CoreLink CCI-400 Cache Coherent Interconnect and ARM CoreLink NIC-400 Network Interconnect components:
- Graphics subsystem.
- Universal Serial Bus (USB).
- DMA.
- Debug subsystem.

These SMMUs implement stage 2 address translations, that translates an Intermediate Physical Address (IPA) to a Physical Address (PA).

2.1.7 Generic Interrupt Controller (GIC)

The ADP ARM CoreLink GIC-400 Generic Interrupt Controller complies with the GICv2m architecture. GICv2m includes a message-based interrupt feature that is necessary to handle Message Signaled Interrupts (MSIs).

GICv2m enables MSIs to set GICv2 Shared Peripheral Interrupts (SPIs) to pending. The GICv2m provides a similar mechanism to the message-based interrupt features added in GICv3.

The ADP SoC is compliant to level 1 of the Server Base System Architecture specification. See Compliance on page 1-5.
2.1.8 Memory subsystem

The memory subsystem contains an ARM CoreLink DMC-400 Dynamic Memory Controller that interfaces with external DDR memory using a dual 32-bit DDR3 PHY. The PHY supports both DDR3, and DDR3L and operates to 1600MT/s.

An ARM CoreLink TZC-400 TrustZone™ Address Space Controller exists at the interface of the DMC-400 to the system. The TZC-400 enables the trusted OS to define multiple regions within the DDR memory that have different security access permissions.

2.1.9 Peripheral Component Interconnect Express (PCIe)

The ADP includes a 4-lane PCIe Root Port capable of operating at up to 5GTps per lane. The Root Port supports high-bandwidth connectivity with external peripherals such as SATA disk controllers and Gigabit Ethernet NIC. The PCIe Root Port and PHY are integrated on the chip.

2.1.10 USB 2.0 Enhanced Host Controller Interface (EHCI)

The ADP SoC instantiates a bus mastered USB 2.0 Enhanced Host Controller Interface (EHCI) host controller for attaching peripherals such as keyboard, mouse, and flash drive to the system. The EHCI operates with native OS drivers and supports the following available speeds:

• Low speed.
• Full speed.
• Hi speed.

USB 2.0 supports data rates of 480Mbps. The host controller is on the SoC. It is connected to a USB PHY on the board through the 60MHz 12-pin UTMI+ Low Pin Interface (ULPI) Single Data Rate (SDR) interface. The USB controller is configured to provide one OHCI controller and one EHCI controller. Debug is an optional feature in EHCI but the ADP does not support it.

The USB 2.0 controller supports 64-bit EHCI addressing capability therefore supports Large Physical Address Extension (LPAE) and 64-bit Operating Systems (OSs).

2.1.11 Direct Memory Access (DMA)

The ADP SoC includes a system ARM CoreLink DMA-330 DMA Controller. You can use the Direct Memory Access (DMA) controller to transfer data:

• Within memory.
• Between memory and peripherals.

2.1.12 High Definition Liquid Crystal Display (HDLCD) controllers

The ADP SoC includes two independent High Definition Liquid Crystal Display (HDLCD) controllers. The HDLCD controllers can run from:

• An HDLCD clock that is generated by an on-chip PLL.
• A shared clock that is fed directly from outside through the input pad.

This scheme enables both displays to run at high resolution, and you can switch either or both of the displays to low-resolution mode, such as VGA, if necessary. The ADP includes a single HDLCD PLL and it is not possible to run both displays at different high-resolution modes. The achievable frame rate of Full-High Definition (FHD) is 60fps.

An I2S controller supplies audio, and the output serves the two High Definition Multimedia Interface (HDMI) connectors that are on the board.

1. USB 2.0 Transceiver Macrocell Interface (UTMI).
2.1.13 **Static Memory Controller (SMC)**

The ADP includes an SMC-354 *Static Memory Controller* (SMC) to provide access to a 64MB off-chip NOR flash. The interface also provides access to off-chip peripherals such as *Non-Volatile* (NV) counter for anti-replay protection, Secure keypad input, and *Real Time Counter* (RTC) instantiated within a *Field Programmable Gate Array* (FPGA).

2.1.14 **Universal Asynchronous Receiver-Transmitter (UART)**

The ADP SoC provides Secure and Non-secure *Universal Asynchronous Receiver-Transmitters* (UARTs), PL011s, for:

- Firmware logs and interactive firmware shell.
- Debugging the OS kernel.

Both serial ports operate at up to 115200Bd.

2.1.15 **I²C**

The ADP SoC includes the following I²C controllers:

1. I²C controller that is only accessible from the SCP and used for PMIC control.
2. I²C controller that is mapped in the application processor area and used for board functions such as:
 - HDMI controller configuration.
 - *Small Outline Dual In-line Memory Module* (SODIMM) discovery.
3. I²C controller that is mapped in the application processor area and used exclusively for trusted user input from a keypad.

2.1.16 **Thin Links SoC to FPGA prototyping interface**

The ADP contains an ARM CoreLink TLX-400 Network Interconnect Thin Links component. An AXI expansion interface covers both master and slave interfaces for prototyping and driver development for external components such as GPU and I/O peripherals. The Thin Links expansion interface supports 40-bit addressing, QoS, and I/O coherency. The interface supports the following bandwidths:

Juno r2 SoC master interface

- Forward direction, that is, from the Juno r2 SoC to the FPGA: 68Mbps.
- Reverse direction, that is, from the FPGA to the Juno r2 SoC: 78Mbps.

Juno r2 SoC slave interface

- Forward direction, that is, from the FPGA to the Juno r2 SoC: 246Mbps.
- Reverse direction, that is, from the Juno r2 SoC to the FPGA: 305Mbps.

2.1.17 **CoreSight™**

ARM CoreSight™ technology provides debug and trace capability and includes an enhanced capability for extracting bandwidth and latency measurements from the system.
2.2 **Trusted Execution Environment (TEE)**

The ADP provides a software development environment to enable the development of a trusted OS.

Specifically, the following peripherals are instantiated:

- Trusted entropy sources.
- Trusted key storage.
- Non-Volatile (NV) counter.
- Non-invasive attack prevention.

2.2.1 **Trusted entropy sources**

Two trusted entropy sources are instantiated.

2.2.2 **Trusted key storage**

The Trust Board Boot Requirements (TBBR) PDD defines a set of cryptographic keys to store in One Time Programmable (OTP) or eFuse memory. The ADP does not instantiate an OTP or eFuse macro. Instead, keys are tied in hardware, using registers that TIE cells drive, to a default and fixed value. These keys are as follows:

- 128-bit Hardware Unique Key (HUK).
- 256-bit Endorsement Key (EK).
- 256-bit Hash of the Root Of Trusted Public Key (ROTPK).

--- Note ---

The optional Secret Symmetric Key (SSK) is not implemented.

2.2.3 **Non-Volatile (NV) counter**

The Trusted Base System Architecture (TBSA) PDD defines a series of NV counters that retain state even when the SoC has been powered down. For the purposes of the development platform, the trusted and non-trusted counters are tied to the limit of increment:

- 31 For the trusted counter.
- 223 For the non-trusted counter.

The 232 state anti-replay counter exists through implementation in an external FPGA and you can access it by using a Secure I²C access.

2.2.4 **Non-invasive attack prevention**

The ADP does not instantiate peripherals to prevent non-invasive attacks such as glitch or brown-out detection.
2.3 Power control and thermal management

This section contains the following subsections:

- Voltage domains.
- Power-gated regions on page 2-9.
- Sensor-based power-management on page 2-9.

2.3.1 Voltage domains

The following core voltage domains exist on the ADP SoC:

- **VA72**: Core supply to the dual core Cortex-A72 cluster. 0.8-1.0V. Switchable on the board.
- **VA53**: Core supply to the quad core Cortex-A53 cluster. 0.8-1.0V. Switchable on the board.
- **VGPU**: Core supply to the Mali-T624 Series GPU. 0.8-0.9V. Switchable on the board.
- **VSYSTOP**: Main 0.9V supply to the SoC top-level, including peripherals such as USB, top-level logic, and the CoreSight subsystem. Switchable on the board.
- **VAON**: Always on 0.9V supply to the SCP subsystem, Debug Access Ports, and the digital side of the General Purpose Input and Output (GPIO).

The ADP contains asynchronous clock domains that fully support DVFS of the Cortex-A72 cluster, Cortex-A53 cluster, and the GPU. Figure 2-2 on page 2-9 shows the ADP voltage domains.
2.3.2 Power-gated regions

The ADP contains the following gated power components:

- The two Cortex-A72 cores, the Snoop Control Unit (SCU), and the L2 can be power-gated separately.
- The four Cortex-A53 cores, the SCU, and the L2 can be power-gated separately. The Embedded Trace Macrocell (ETM) is not separately gated.

The GPU has no provision for individual power-gating of each shader core.

2.3.3 Sensor-based power-management

Sensor-based power-management provides feedback to the SCP and application processors to enable real-time thermal management. Power, Voltage, Temperature (PVT) monitors are instantiated at key locations in the ADP, such as physically close to the GPU and Cortex-A72 processor clusters. Unique SQ adjustment parameters for each device support sensor calibration.
2.4 **ADP motherboard specification**

The ADP motherboard includes the following hardware:

- PMIC.
- *Ball Grid Array* (BGA), BGA-1156, instantiating an ADP SoC.
- Dual HDMI Controllers.
- Two DDR3-1600, 800MHz, providing 8GB of memory.
- USB 2.0 PHY and USB hub.
- A *Peripheral Component Interconnect Express* (PCIe) Gen2.0 four lanes, Root Port, and PHY, that has both I/O coherent and non-coherent modes.
- NOR Flash, 64MB, two banks of 32MB.
- Two RS232 UARTs.
- I/O component FPGA providing:
 - Secure I²C anti-replay counters.
 - Battery-backed *Real Time Clock* (RTC).
 - Secure keyboard and keypad socket.
- ARM CoreSight Interfaces, *Joint Test Action Group* (JTAG), and trace.

Figure 2-3 on page 2-11 shows a block diagram of the ADP board.
Figure 2-3 ADP board block diagram
Chapter 3
Software Functional Description

This chapter contains links to information about the Juno ARM® Development Platform (ADP) SoC software.

- The following website describes the Juno r2 software stacks:
 https://community.arm.com/groups/arm-development-platforms

- The Juno ARM® Development Platform Getting Started Guide in the following location describes the firmware:
Appendix A

Hardware Components

This chapter describes the Juno r2 ARM Development Platform (ADP) SoC hardware. It contains the following sections:

- *ADP SoC* on page A-2.
- *ADP motherboard* on page A-3.
A.1 ADP SoC

The ADP SoC includes the following hardware:

- Dual core Cortex®-A72 processor cluster.
- Quad core Cortex-A53 processor cluster.
- Mali™-T624 Series GPU with four shader cores.
- System Control Processor (SCP) based on a Cortex-M3 processor.
- CoreLink™ CCI-400 Cache Coherent Interconnect.
- CoreLink NIC-400 Network Interconnect.
- CoreLink MMU-401 System Memory Management Unit.
- CoreLink MMU-400 System Memory Management Unit.
- CoreLink GIC-400 Generic Interrupt Controller.
- CoreLink DMC-400 DDR3 Dynamic Memory Controller.
- CoreLink DMA-330.
- Dual 32-bit DDR3, two × 1600MT/s.
- Dual ARM HDLCD display controllers, 1920 × 1080 at 60fps, with single I²S with four stereo channels.
- Bus mastered EHCI USB2 host controller, 480Mbps, UTMI+ Low Pin Interface (ULPI) interface to off-chip PHY1.
- CoreLink SMC-354 Static Memory Controller, 64MB NOR flash, and board peripherals.
- UART, two × PL011.
- I²C, high-speed mode, 3.4Mb/s.
- PVT sensor subsystem.
- Security peripherals, RNG, NV counters, fuses, 32KHz oscillator.
- AXI master and slave SoC to FPGA interface based on CoreLink TLX-400, Thin Links technology.

1. USB 2.0 Transceiver Macrocell Interface (UTMI).
A.2 ADP motherboard

See *ADP motherboard specification* on page 2-10.
Appendix B

Revisions

This appendix describes the technical changes between released issues of this book.

<table>
<thead>
<tr>
<th>Table B-1 Issue A</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>Location</td>
<td>Affects</td>
</tr>
<tr>
<td>First release.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-2 Differences between issue A and issue B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>Location</td>
<td>Affects</td>
</tr>
<tr>
<td>Replaced the PL352 component with the PL354 component.</td>
<td>Throughout the document.</td>
<td>r1p0</td>
</tr>
<tr>
<td>Updated references to the board, and board documentation, to Juno r1 and V2M-Juno r1.</td>
<td>Throughout the document.</td>
<td>r1p0</td>
</tr>
<tr>
<td>Added PCIe information.</td>
<td></td>
<td>r1p0</td>
</tr>
<tr>
<td>• ADP SoC block diagram on page 2-2.</td>
<td></td>
<td>r1p0</td>
</tr>
<tr>
<td>• Peripheral Component Interconnect Express (PCIe) on page 2-5.</td>
<td></td>
<td>r1p0</td>
</tr>
<tr>
<td>• ADP motherboard specification on page 2-10.</td>
<td></td>
<td>r1p0</td>
</tr>
<tr>
<td>• ADP board block diagram on page 2-11.</td>
<td></td>
<td>r1p0</td>
</tr>
<tr>
<td>Updated Thin Links speed values.</td>
<td>Thin Links SoC to FPGA prototyping interface on page 2-6.</td>
<td>r1p0</td>
</tr>
<tr>
<td>Updated voltage values.</td>
<td>Voltage domains on page 2-8.</td>
<td>r1p0</td>
</tr>
<tr>
<td>Removed SODIMM.</td>
<td>ADP motherboard specification on page 2-10</td>
<td>r1p0</td>
</tr>
</tbody>
</table>
Table B-3 Differences between issue B and issue C

<table>
<thead>
<tr>
<th>Change</th>
<th>Location</th>
<th>Affects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changed the big processor from a Cortex®-A57 processor to a Cortex-A72 processor.</td>
<td>Throughout the document.</td>
<td>r2p0</td>
</tr>
<tr>
<td>Changed the voltage range of the Cortex-A53 processor.</td>
<td>Voltage domains on page 2-8</td>
<td>r2p0</td>
</tr>
<tr>
<td>Removed references to sockets where items are soldered.</td>
<td>ADP motherboard specification on page 2-10</td>
<td>r2p0</td>
</tr>
<tr>
<td>Removed the contents of the Software Functional Description chapter and replaced with links to:</td>
<td>Chapter 3 Software Functional Description</td>
<td>r2p0</td>
</tr>
<tr>
<td>• The ARM® Development Platforms section of the ARM Connected Community website.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>