
Fixed Virtual Platforms
Version 1.4

VE Cortex-A15 Cortex-A7 CCI-400 User Guide

Copyright © 2014-2016 ARM. All rights reserved.
ARM DUI0848G

Fixed Virtual Platforms
VE Cortex-A15 Cortex-A7 CCI-400 User Guide
Copyright © 2014-2016 ARM. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 30 November 2014 Non-Confidential New document for Fast Models v9.1, from DUI0585C for v9.0.

B 28 February 2015 Non-Confidential Update for v9.2.

C 31 May 2015 Non-Confidential Update for v9.3.

D 31 August 2015 Non-Confidential Update for v9.4.

E 30 November 2015 Non-Confidential Update for v9.5.

F 29 February 2016 Non-Confidential Update for v9.6.

G 31 May 2016 Non-Confidential Update for v10.0.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is
not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2014-2016, ARM Limited or its affiliates. All rights reserved.

 Fixed Virtual Platforms

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2
Non-Confidential

http://www.arm.com/about/trademark-usage-guidelines.php

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Fixed Virtual Platforms

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3
Non-Confidential

http://www.arm.com

Contents
Fixed Virtual Platforms VE Cortex-A15 Cortex-A7
CCI-400 User Guide

Preface
About this book 7

Chapter 1 Introduction
1.1 About system models 1-10
1.2 About the VE FVP .. 1-11
1.3 About the Cortex-A15 Cortex-A7 CCI-400 FVP 1-12

Chapter 2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.1 Supported operating systems for the Cortex-A15 Cortex-A7 CCI-400 FVP 2-14
2.2 Licenses for Cortex-A15 Cortex-A7 CCI-400 2-15
2.3 Installing the Cortex-A15 Cortex-A7 CCI-400 .. 2-16
2.4 Running models from the command line 2-17
2.5 Running models using Model Debugger 2-19
2.6 Configuring the model 2-20

Chapter 3 Programmers Reference
3.1 Fixed Virtual Platforms for VE platform functionality 3-23
3.2 Fixed Virtual Platform VE Cortex-A15 Cortex-A7 CCI-400 memory map and interrupts .

.. 3-24
3.3 CS2 peripheral memory map 3-25
3.4 CS3 peripheral memory map 3-26

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 4
Non-Confidential

3.5 Model parameters .. 3-27
3.6 Motherboard peripheral parameters .. 3-28
3.7 Motherboard virtual component parameters .. 3-31
3.8 CoreTile parameters .. 3-33
3.9 Memory map differences between the VE hardware and the system model 3-37
3.10 Memory aliasing differences between the VE hardware and the system model 3-38
3.11 Features not present in the model 3-39
3.12 Features partially implemented in the model 3-40
3.13 Restrictions on the processor models 3-41
3.14 Timing considerations .. 3-42
3.15 Bus consistency messages 3-43
3.16 Multiple entries in the cache with the same security world 3-44
3.17 Mismatched attributes 3-45
3.18 Cache Coherent Interconnect snoop and DVM enables 3-47
3.19 Snoop or DVM messages received while in reset 3-48
3.20 Invalidation of dirty lines 3-49
3.21 Dual Cluster System Configuration Block .. 3-50
3.22 Reset architecture 3-67
3.23 Interrupt Generation Trickbox .. 3-68

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 5
Non-Confidential

Preface

This preface introduces the Fixed Virtual Platforms VE Cortex-A15 Cortex-A7 CCI-400 User Guide.

It contains the following:
• About this book on page 7.

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 6
Non-Confidential

 About this book
This book describes how to configure and use the Fixed Virtual Platform (FVP) VE Cortex-A15 Cortex-
A7 CCI-400 Cache Coherent Interconnect. The model enables software applications to run on a virtual
implementation based on the Versatile™ Express (VE) memory map. The model contains a CoreTile that
models an ARM Cortex-A15 SMP and an ARM Cortex-A7 SMP connected using the CCI-400.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the Versatile Express (VE) Cortex-A15 Cortex-A7 CCI-400 Fixed
Virtual Platform (FVP).

Chapter 2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
This chapter describes how to use the model. It also contains information regarding license key
requirements and installation.

Chapter 3 Programmers Reference
Read this for a description of the functionality that the model supports, including the memory map
and configuration parameters.

 Glossary

The ARM Glossary is a list of terms used in ARM documentation, together with definitions for those
terms. The ARM Glossary does not contain terms that are industry standard unless the ARM meaning
differs from the generally accepted meaning.

See the ARM Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
ARM glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

 Preface
 About this book

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 7
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Fixed Virtual Platforms VE Cortex-A15 Cortex-A7 CCI-400 User Guide.
• The number ARM DUI0848G.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
 Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• ARM Information Center.
• ARM Technical Support Knowledge Articles.
• Support and Maintenance.
• ARM Glossary.

 Preface
 About this book

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 8
Non-Confidential

mailto:errata@arm.com
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/services/support-maintenance.php
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Introduction

Read this for an introduction to the Versatile Express (VE) Cortex-A15 Cortex-A7 CCI-400 Fixed Virtual
Platform (FVP).

Describes system models, the VE FVPs, and the VE Cortex-A15 Cortex-A7 CCI-400 FVP.

It contains the following sections:
• 1.1 About system models on page 1-10.
• 1.2 About the VE FVP on page 1-11.
• 1.3 About the Cortex-A15 Cortex-A7 CCI-400 FVP on page 1-12.

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 1-9
Non-Confidential

1.1 About system models
The Fixed Virtual Platforms (FVPs) enable you to develop software without the requirement for actual
hardware.

The software models provide a Programmer’s View (PV) model of processors and peripheral devices.
The functional behavior of a model is based on functionality in equivalent real hardware. Absolute
timing accuracy is sacrificed to achieve fast simulated execution speed. To confirm software
functionality, use the PV models. However, do not rely on them for:
• The accuracy of cycle counts.
• Low-level component interactions.
• Other hardware-specific behavior.

1 Introduction
1.1 About system models

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 1-10
Non-Confidential

1.2 About the VE FVP
Versatile Express (VE) is a hardware development platform that ARM produces.

You can split a VE system into the following sub-components:

Motherboard
The Motherboard Express μATX includes a range of peripherals that provide a general purpose
I/O platform. The motherboard contains two daughterboard sockets for CoreTile Express or
LogicTile Express boards. For more information, see the Motherboard Express μATX V2M-P1
Technical Reference Manual.

Daughterboard
Field Programmable Gate Array (FPGA) and processor daughterboards provide:
• Custom peripherals.
• Early access to processor designs.
• Production test chips.

System memory is also implemented on the daughterboard.
Processor

An implementation of an ARM processor.

The VE Fixed Virtual Platform (FVP) is a system model implemented in software. The model contains:
• Virtual implementations of a motherboard.
• A single daughterboard.
• A specific ARM processor.
• Associated interconnections.

The model is based on the VE platform memory map, but it is not intended to be an accurate
representation of a specific VE hardware revision. The VE FVP supports selected peripherals as this
document describes. The supplied model is sufficiently complete and accurate to boot the same operating
system images as for the VE hardware. The model is developed using the ARM® Fast Models library
product.

1 Introduction
1.2 About the VE FVP

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 1-11
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0447j/DUI0447J_v2m_p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0447j/DUI0447J_v2m_p1_trm.pdf

1.3 About the Cortex-A15 Cortex-A7 CCI-400 FVP
The Dual Cluster System (DCS) contains the Cortex-A15 and Cortex-A7 clusters.

This includes the interconnect required to implement the heterogeneous multi-processing platform, and
to support the software-controlled powering up and powering down of the Cortex-A15 and Cortex-A7
clusters, and task migration between the two. The interconnect is implemented using:

CCI-400 Cache Coherent Interconnect
Provides bus interconnect and coherency functions in a single module. It supports connectivity
for up to two ACE masters. For example, a Cortex-A15 processor and a Cortex-A7 processor.
For more information, see the CCI-400 Cache Coherent Interconnect Architecture Specification.

Dual Cluster System Configuration Block (DCSCB)
Provides basic functionality for controlling clocks, resets, and configuration pins in the
CoreTile. For more information, see 3.8.4 Dual cluster system configuration block parameters
on page 3-34.

A single external Virtual GIC
This is shared between the Cortex-A15 and Cortex-A7 clusters. For more information, see the
Virtual GIC Specification.

DCSCB
ARM

Cortex-A7
core cluster

ARM
Cortex-A15
core cluster

CCI-400

GIC-400

System
memory

Peripherals
such as

UART and
timer

Virtual components
such as mouse,

keyboard, CLCD, and
XTerm

bigLITTLECoreTile

int int

int

VE daughterboard

VE motherboard

FVP VE bigLITTLE, platform model

Figure 1-1 Model architecture

Related references
3.8.4 Dual cluster system configuration block parameters on page 3-34.

1 Introduction
1.3 About the Cortex-A15 Cortex-A7 CCI-400 FVP

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 1-12
Non-Confidential

Chapter 2
Getting Started with the Cortex-A15 Cortex-A7
CCI-400 FVP

This chapter describes how to use the model. It also contains information regarding license key
requirements and installation.

It contains the following sections:
• 2.1 Supported operating systems for the Cortex-A15 Cortex-A7 CCI-400 FVP on page 2-14.
• 2.2 Licenses for Cortex-A15 Cortex-A7 CCI-400 on page 2-15.
• 2.3 Installing the Cortex-A15 Cortex-A7 CCI-400 on page 2-16.
• 2.4 Running models from the command line on page 2-17.
• 2.5 Running models using Model Debugger on page 2-19.
• 2.6 Configuring the model on page 2-20.

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-13
Non-Confidential

2.1 Supported operating systems for the Cortex-A15 Cortex-A7 CCI-400 FVP
The Cortex-A15 Cortex-A7 CCI-400 FVP needs certain software.

Red Hat Enterprise Linux 6.4 on 64-bit architectures.
Ubuntu 12.04 LTS on 64-bit architectures.
Microsoft Windows 7 with Service Pack 1 on 64-bit architectures, with runtime support for Visual

Studio.

2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.1 Supported operating systems for the Cortex-A15 Cortex-A7 CCI-400 FVP

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-14
Non-Confidential

2.2 Licenses for Cortex-A15 Cortex-A7 CCI-400
The platform model requires FlexLm license keys to run.

The license feature names are as follows:
• SG_ARM_Cortex-A15_CT.
• SG_ARM_Cortex-A7_CT.
• SG_v7SystemIP_CT.
• FM_Simulator.

In addition, the Model Debugger requires a license key with the feature name MaxView_Debugger.

2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.2 Licenses for Cortex-A15 Cortex-A7 CCI-400

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-15
Non-Confidential

2.3 Installing the Cortex-A15 Cortex-A7 CCI-400
This section describes how to install the Cortex-A15 Cortex-A7 CCI-400.

ARM provides the model as an installer package.

Prerequisites

On Microsoft Windows 7, you must install runtime support for Visual Studio applications beforehand.
These libraries are available free of charge from Microsoft:

http://www.microsoft.com/en-gb/download/details.aspx?id=40784

Alternatively, visit http://www.microsoft.com and search for “Visual 20XX runtime”.

Procedure
1. Start the installer program for the required host platform, setup.exe or setup.bin, and follow the

instructions on the screen.

2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.3 Installing the Cortex-A15 Cortex-A7 CCI-400

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-16
Non-Confidential

http://www.microsoft.com/en-gb/download/details.aspx?id=40784
http://www.microsoft.com

2.4 Running models from the command line
The pre-built models are supplied as Integrated SIMulator (ISIM) binaries.

You can execute these binaries:
• Directly from the command line.
• Indirectly using Model Debugger.

Options

To run the model from the command line, type the name of the ISIM binary, for example:

FVP_VE_Cortex-A15x1-A7x1

FVP_VE_Cortex-A15x1-A7x1.exe
 Note

The FVP_VE_Cortex-A15×1-A7×1 file corresponds to the ISIM binary for a Cortex-A15×1 Cortex-A7×1
CCI-400 dual cluster platform model.

The FVP_VE_Cortex-A15×4-A7×4 file corresponds to the ISIM binary for a Cortex-A15×4 Cortex-A7×4
CCI-400 dual cluster platform model.

The following table shows the arguments and options that you can specify on the command line.

Table 2-1 Command line options

Short Long option Description

-a --application target=filename Loads the application file filename into processor target. For example:
coretile.cluster0.cpu0=brot_ve.axf

- --data
target=file@[space:]address

Loads raw data from file at the specified address in the specified target.

Optionally, you can also specify a memory space.

- --dump
target=file@[space:]address

Dumps raw data into file from the specified address in the specified
target. Optionally, you can also specify a memory space.

-b --break target=address Sets a break-point at address for target.

-s --start target=address Sets initial PC to application start address.

-C --parameter parameter Sets a single parameter of the model. Parameters are specified as a path that
names the instance and the parameter name using dot separators.

For example: foo.bar.inst.parameter=1000

If it is necessary to set multiple parameters at the same time, use the --
config-file option instead.

- --timelimit n Number of seconds to run, excluding startup and shutdown. The default is
unlimited.

- --cpulimit n Number of host processor seconds to run, kernel and user, excluding startup
and shutdown. The default is unlimited.

- --cyclelimit n Number of cycles to run. This is ignored if –S is specified. The default is
unlimited.

- --list-instances Lists target instances.

-l --list-params Lists target instances and their parameters.

2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.4 Running models from the command line

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-17
Non-Confidential

Table 2-1 Command line options (continued)

Short Long option Description

- --list-memory Lists memory information.

-f --config-file filename Loads model configuration parameters from file filename.

-o --output filename Redirects parameter, memory, and instance lists to the output file filename.

-t --cadi-trace Enables diagnostic output of CADI calls and call-backs.

-L --cadi-log Log all CADI calls into an XML logfile.

-S --cadi-server Starts the CADI server and enables debuggers to connect to targets in the
simulation.

- --stat Prints run statistics on exit.

- --trace-plugin filename Loads trace plugin filename.

-h --help Shows command line help message and exits.

-P --prefix Prefixes semi-hosting output with target instance name.

-R --run Runs simulation immediately after load even with CADI server.

-V --verbose Specifies more verbosity about the current status.

-v --version Prints version and copyright information.

-q --quiet Suppresses all informational output.

- --print-port-number Prints the port number on which the CADI server is listening.

-k --keep-console Keeps the console window open after completion. Microsoft Windows only.

2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.4 Running models from the command line

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-18
Non-Confidential

2.5 Running models using Model Debugger
Describes how to use the Model Debugger application to debug an application running on the model.

You can start the models directly using Model Debugger from the command line, for example:

modeldebugger –-debug-isim bin/FVP_VE_Cortex-A15x1-A7x1 \

--application coretile.cluster0.cpu0=examples/brot_ve.axf

Alternatively, you can start the model using the CADI server by using the –-cadi-server command line
argument that 2.4 Running models from the command line on page 2-17 describes. In this case, you can
start Model Debugger separately and connect it to the model using CADI by selecting:

File > Connect to Model > <select model from list> > Connect.

Related information
Model Debugger for Fast Models User Guide.

2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.5 Running models using Model Debugger

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-19
Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.dui0844-/index.html

2.6 Configuring the model
Describes how to configure Versatile Express (VE) Fixed Virtual Platforms (FVPs).

 Note

3.5 Model parameters on page 3-27 describes the valid user settings for the VE FVP parameters and
their effects.

When you start the model from the command line, you can configure it using either:

• The --parameter command line argument.
• A configuration file and the --config-file command line argument.

You can configure a model started from the command line by including a reference to an optional plain
text configuration file.

Each line of the configuration file must contain:
• The name of the component instance.
• The parameter to modify.
• Its value.

You must use the following format:

instance.parameter=value

The instance can be a hierarchical path, with each level separated by a dot “.” character. You can
include comment lines in your configuration file. These lines begin with a # character. You can set
Boolean values using either true or false, or 1 or 0.

You can generate a valid configuration file with all parameters set to default values with the --list-
params option by directing the output into the new configuration file.

Example 2-1 Sample configuration file including syntax examples

Disable semihosting using true/false syntax
coretile.cluster0.cpu0.semihosting-enable=false
#
Enable VFP at reset using 1/0 syntax
coretile.cluster0.cpu0.vfp-enable_at_reset=1

Set the baud rate for UART 0
motherboard.pl011_uart0.baud_rate=0x4800

2 Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
2.6 Configuring the model

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 2-20
Non-Confidential

Chapter 3
Programmers Reference

Read this for a description of the functionality that the model supports, including the memory map and
configuration parameters.

This chapter also describes:
• Registers.
• Debug behaviors.
• Expected performance.
• Known limitations.
• Functionality that is not supported.

It contains the following sections:
• 3.1 Fixed Virtual Platforms for VE platform functionality on page 3-23.
• 3.2 Fixed Virtual Platform VE Cortex-A15 Cortex-A7 CCI-400 memory map and interrupts

on page 3-24.
• 3.3 CS2 peripheral memory map on page 3-25.
• 3.4 CS3 peripheral memory map on page 3-26.
• 3.5 Model parameters on page 3-27.
• 3.6 Motherboard peripheral parameters on page 3-28.
• 3.7 Motherboard virtual component parameters on page 3-31.
• 3.8 CoreTile parameters on page 3-33.
• 3.9 Memory map differences between the VE hardware and the system model on page 3-37.
• 3.10 Memory aliasing differences between the VE hardware and the system model on page 3-38.
• 3.11 Features not present in the model on page 3-39.
• 3.12 Features partially implemented in the model on page 3-40.
• 3.13 Restrictions on the processor models on page 3-41.
• 3.14 Timing considerations on page 3-42.
• 3.15 Bus consistency messages on page 3-43.

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-21
Non-Confidential

• 3.16 Multiple entries in the cache with the same security world on page 3-44.
• 3.17 Mismatched attributes on page 3-45.
• 3.18 Cache Coherent Interconnect snoop and DVM enables on page 3-47.
• 3.19 Snoop or DVM messages received while in reset on page 3-48.
• 3.20 Invalidation of dirty lines on page 3-49.
• 3.21 Dual Cluster System Configuration Block on page 3-50.
• 3.22 Reset architecture on page 3-67.
• 3.23 Interrupt Generation Trickbox on page 3-68.

3 Programmers Reference

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-22
Non-Confidential

3.1 Fixed Virtual Platforms for VE platform functionality
The Fixed Virtual Platforms for the VE platform provide functionality for the following components:

VE motherboard model with:

• VE System Register block.
• Two Dual Timer modules, SP804.
• Watchdog module, SP805.
• System Controller, SP810.
• Four UARTs, PrimeCell PL011.
• Color LCD Controller, PrimeCell PL111 CLCD.
• Real-Time Clock, PrimeCell PL031 RTC.
• Two PS/2 keyboard and mouse interfaces, PrimeCell PL050 KMI.
• Multimedia Card Interface, PrimeCell PL180 MCI.
• Advanced Audio CODEC Interface, PrimeCell PL041 AACI.
• 10/100 Non-PCI Ethernet Controller, SMSC 91C111.
• Two 64MB areas of user NOR Flash.
• 8MB of local video SRAM.

The VE motherboard model also includes the following virtual components:

• PS/2 mouse and keyboard models connected to the PL050 KMIs.
• Visualization for CLCD display with keyboard and mouse support.
• Generic Multi-Media Card (MMC) connected to the PL180 MCI.
• Four telnet terminals, one attached to each UART.
• Flash loaders for both banks of flash.
• Audio out connected to the PL041 AACI.
• Ethernet crossover cable and host-bridge connected to the SMSC 91C111.
• Virtual File System 2 (VFS2) for host file system access.

VE daughterboard model with the following:

• VE Daughterboard Configuration and Control block (VEDCC).
• VE Interrupt mapper.
• 64Kb System RAM.
• 4GB DRAM.

ARM Cortex-A15 Cortex-A7 CoreTile models with the following:
• ARM Cortex-A15 core cluster.
• ARM Cortex-A7 core cluster.
• Shared Virtual Generic Interrupt Controller, v7 GIC-400.
• Dual Cluster System Configuration Block.
• CCI-400 Cache Coherent Interconnect.

3 Programmers Reference
3.1 Fixed Virtual Platforms for VE platform functionality

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-23
Non-Confidential

3.2 Fixed Virtual Platform VE Cortex-A15 Cortex-A7 CCI-400 memory map and
interrupts

The following table shows the global memory map for the platform model. This map is based on the
Versatile Express RS1 memory map with the RS2 extensions.

Table 3-1 Global memory map for the platform model

Address range Size Modeled Description

0x00_00000000-0x00_03FFFFFF 64MB Yes NOR FLASH0, CS0.

0x00_04000000-0x00_08FFFFFF 64MB Yes Secure RAM.

0x00_08000000-0x00_0BFFFFFF 64MB Yes NOR FLASH0 alias, CS0.

0x00_0C000000-0x00_0FFFFFFF 64MB Yes NOR FLASH1, CS4.

0x00_10000000-0x00_0001FFFF - - Unused, CS5.

0x00_10021000-0x00_13FFFFFF - - Unused, CS5.

0x00_14000000-0x00_17FFFFFF - No PSRAM, CS1.

0x00_18000000-0x00_1BFFFFFF 64MB Yes Peripherals, CS2. See 3.3 CS2 peripheral memory map on page 3-25.

0x00_1C000000-0x00_1FFFFFFF 64MB Yes Peripherals, CS3. See 3.4 CS3 peripheral memory map on page 3-26.

0x00_20000000-0x00_2BFFFFFF - No CoreSight and peripherals.

0x00_2C000000-0x00_2C000FFF - - Unused, CPU PERIPHBASE.

0x00_2C001000-0x00_2C007FFF 128MB Yes Shared v7 GIC-400.

0x00_2C008000-0x00_2C08FFFF - - Unused.

0x00_2C090000-0x00_2C09FFFF 64MB Yes CCI-400 PMU.

0x00_2C0A0000-0x00_2CFFFFFF - - Unused.

0x00_2D000000-0x00_2DFFFFFF - No Graphics space.

0x00_2E000000-0x00_2E00FFFF 64MB Yes System SRAM.

0x00_2E010000-0x07_FFFFFFFF - No Ext AXI.

0x00_60000000-0x00_60000FFF 4KB Yes Dual Cluster System Configuration Block.

0x00_80000000-0x00_FFFFFFFF 2GB Yes 4GB DRAM, in 32-bit address space. The model contains 4GB of DRAM.
The DRAM memory address space is aliased across the three different
regions, and where the mapped address space is greater than 4GB.

0x01_00000000-0x07_FFFFFFFF - - Unused.

0x08_00000000-0x08_FFFFFFFF 4GB Yes 4GB DRAM, in 36-bit address space. The model contains 4GB of DRAM.
The DRAM memory address space is aliased across the three different
regions, and where the mapped address space is greater than 4GB.

0x09_00000000-0x7F_FFFFFFFF - - Unused.

0x80_00000000-0xFF_FFFFFFFF 512GB Yes 4GB DRAM, in 40-bit address space. The model contains 4GB of DRAM.
The DRAM memory address space is aliased across the three different
regions, and where the mapped address space is greater than 4GB.

3 Programmers Reference
3.2 Fixed Virtual Platform VE Cortex-A15 Cortex-A7 CCI-400 memory map and interrupts

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-24
Non-Confidential

3.3 CS2 peripheral memory map
The following table shows the memory map for peripherals in the CS2 region.

Table 3-2 CS2 peripheral memory map

Address range Size Int Modeled Description

0x00_18000000-0x00_19FFFFFF 32MB - Yes 8MB VRAM

0x00_1A000000-0x00_1AFFFFFF 16MB 47 Yes Ethernet, SMSC 91C111

0x00_1B000000-0x00_1BFFFFFF 16MB - No USB

3 Programmers Reference
3.3 CS2 peripheral memory map

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-25
Non-Confidential

3.4 CS3 peripheral memory map
The following table shows the memory map for peripherals in the CS3 region.

Table 3-3 CS3 peripheral memory map

Address range Size Int Modeled Description

0x00_1C000000-0x 0x00_1C00FFFF 64KB - No Local DAP ROM

0x00_1C010000-0x 0x00_1C01FFFF 64KB - Yes VE System Registers

0x00_1C020000-0x 0x00_1C02FFFF 64KB - Yes System Controller, SP810

0x00_1C030000-0x00_1C03FFFF 64KB - No TwoWire serial interface, PCIe

0x00_1C040000-0x00_1C04FFFF 64KB 43 Partial AACI, PL041

0x00_1C050000-0x00_1C05FFFF 64KB 41, 42 Partial MCI, PL180

0x00_1C060000-0x00_1C06FFFF 64KB 44 Yes KMI, keyboard, PL050

0x00_1C070000-0x00_1C07FFFF 64KB 45 Yes KMI, mouse, PL050

0x00_1C080000-0x00_1C08FFFF 64KB - - Reserved

0x00_1C090000-0x00_1C09FFFF 64KB 37 Yes UART0, PL011

0x00_1C0A0000-0x00_1C0AFFFF 64KB 38 Yes UART1, PL011

0x00_1C0B0000-0x00_1C0BFFFF 64KB 39 Yes UART2, PL011

0x00_1C0C0000-0x00_1C0CFFFF 64KB 40 Yes UART3, PL011

0x00_1C0D0000-0x00_1C0EFFFF 64KB 73 Yes VFS2

0x00_1C0D0000-0x00_1C0EFFFF 64KB - - Reserved

0x00_1C0F0000-0x00_1C0FFFFF 64KB 32 Yes Watchdog, SP805

0x00_1C100000-0x00_1C10FFFF 64KB - - Reserved

0x00_1C110000-0x00_1C11FFFF 64KB 34 Yes Timer-0, SP804

0x00_1C120000-0x00_1C12FFFF 64KB 35 Yes Timer-1, SP804

0x00_1C130000-0x00_1C15FFFF 192KB - - Reserved

0x00_1C160000-0x00_1C16FFFF 64KB - No TwoWire serial interface, DVI

0x00_1C170000-0x00_1C17FFFF 64KB 36 Yes Real-time Clock, PL031

0x00_1C180000-0x00_1C19FFFF 128KB - - Reserved

0x00_1C1A0000-0x00_1C1AFFFF 64KB - No CF card

0x00_1C1B0000-0x00_1C1EFFFF 256KB - - Reserved

0x00_1C1F0000-0x00_1C1FFFFF 64KB 46 Yes Color LCD Controller, PL111

0x00_1C200000-0x00_1FFFFFFF 62MB - - Reserved

3 Programmers Reference
3.4 CS3 peripheral memory map

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-26
Non-Confidential

3.5 Model parameters
You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.parameter=value

Table 3-4 FVP_VE_Cortex-A15x1-A7x1 parameters

Parameter Type Allowed values Default value Description

proc_id0 int - 0xC000000 Processor ID at CoreTile Express Site 1.

proc_id1 int - 0xFF000000 Processor ID at CoreTile Express Site 2.

Table 3-5 FVP_VE_Cortex-A15x4-A7x4 parameters

Parameter Type Allowed values Default value Description

proc_id0 int - 0x14000000 Processor ID at CoreTile Express Site 1.

proc_id1 int - 0xFF000000 Processor ID at CoreTile Express Site 2.

3 Programmers Reference
3.5 Model parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-27
Non-Confidential

3.6 Motherboard peripheral parameters
This section describes the motherboard peripheral parameters.

This section contains the following subsections:
• 3.6.1 Color LCD controller parameters on page 3-28.
• 3.6.2 Ethernet parameters on page 3-28.
• 3.6.3 MAC address parameter on page 3-28.
• 3.6.4 System controller parameters on page 3-29.
• 3.6.5 VE System Register block parameters on page 3-29.
• 3.6.6 UART parameters on page 3-29.
• 3.6.7 Watchdog parameter on page 3-30.

3.6.1 Color LCD controller parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.pl111_clcd.parameter=value

Table 3-6 Color LCD controller parameters

Parameter Type Allowed values Default value Description

pixel_double_limit int - 12C The threshold, in horizontal pixels, below which pixels sent to
the frame-buffer are doubled in size in both dimensions.

3.6.2 Ethernet parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.smsc_91c111.parameter=value

Table 3-7 Ethernet parameters

Parameter Type Allowed values Default value Description

enabled bool true, false false Host interface connection enabled.

mac_address string See 3.6.3 MAC address
parameter on page 3-28

00:02:f7:ef:60:30 Host and model MAC address.

promiscuous bool true, false true Places the host into promiscuous mode, for
example, when sharing the Ethernet controller
with the host OS.

3.6.3 MAC address parameter

There are options available for the mac_address parameter.

1. If a MAC address is not specified, when the simulator is run, it takes the default MAC address and
changes its bottom two bytes from 00:02 to the bottom two bytes of the MAC address of one of the
adaptors on the host PC. This provides some degree of MAC address uniqueness when running
models on multiple hosts on a local network.

2. If you specify the MAC address as auto, this generates a completely random local MAC address each
time the simulator is run. The address has bit 1 set and bit 0 clear in the first byte to indicate a locally-
administered unicast MAC address.

3 Programmers Reference
3.6 Motherboard peripheral parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-28
Non-Confidential

 Note

DHCP servers allocate IP addresses, but because they sometimes do this based on the MAC address
provided to them, then using random MAC addresses might interact unfavorably with some DHCP
servers.

3.6.4 System controller parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.sp810_sysctrl.parameter=value

Table 3-8 System controller configuration parameters

Parameter Type Allowed values Default value Description

sysid int - 0x00000000 Value for the system identification register.

use_s8 bool true, false false Select whether switch S8 is enabled.

3.6.5 VE System Register block parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.ve_sysregs.parameter=value

Table 3-9 VE system register block parameters

Parameter Type Allowed values Default value Description

user_switches_value int - 0x00 User switch.

tilePresent bool true, false true CoreTile fitted status.

3.6.6 UART parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.pl011_uartx.parameter=value

x is the UART identifier 0, 1, 2, or 3.

Table 3-10 UART parameters

Parameter Type Allowed values Default value Description

baud_rate int - 0x9600 Baud rate.

clock_rate int - 0xE10000 Clock rate for PL011.

in_file string - "" Input file.

out_file string - "" Output file, use “-” to send all output to stdout.

in_file_escape_sequence string - ## Input file escape sequence string.

shutdown_on_eot bool true, false false Shutdown simulation when an EOT, ASCII 4,
character is transmitted.

3 Programmers Reference
3.6 Motherboard peripheral parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-29
Non-Confidential

Table 3-10 UART parameters (continued)

Parameter Type Allowed values Default value Description

unbuffered_output bool true, false false Unbuffered output.

untimed_fifos bool true, false false Ignore the clock rate and transmit or receive serial data
immediately.

uart_enable bool true, false false Enable the UART when the system starts.

3.6.7 Watchdog parameter

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.sp805_wdog.parameter=value

Table 3-11 Watchdog parameter

Parameter Type Allowed values Default value Description

simhalt bool true, false false Halt on reset.

3 Programmers Reference
3.6 Motherboard peripheral parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-30
Non-Confidential

3.7 Motherboard virtual component parameters
This section describes the motherboard virtual component parameters.

This section contains the following subsections:
• 3.7.1 FLASH loader parameters on page 3-31.
• 3.7.2 Host bridge parameter on page 3-31.
• 3.7.3 Multimedia card parameters on page 3-31.
• 3.7.4 Terminal parameters on page 3-32.
• 3.7.5 VFS2 parameter on page 3-32.
• 3.7.6 Visualization parameters on page 3-32.

3.7.1 FLASH loader parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.flashloaderx.parameter=value

x is the FLASH identifier 0 or 1.

Table 3-12 FLASH loader parameters

Parameter Type Allowed values Default value Description

fname string Valid file name - Path to the host file that initializes FLASH contents when the model
starts. You can gzip compress the file.

fnameWrite string Valid file name - Path to the host file used to save FLASH contents when the model exits.

3.7.2 Host bridge parameter

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.hostbridge.parameter=value

Table 3-13 Host bridge parameter

Parameter Type Allowed values Default value Description

interfaceName string Valid string ARM0 Host Interface identifier.

3.7.3 Multimedia card parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.mmc.parameter=value

Table 3-14 Multimedia card parameters

Parameter Type Allowed values Default value Description

p_mmc_file string Valid filename mmc.dat File used for the MMC component backing store.

p_prodName string Six character string ARMmmc Card ID product name.

p_prodRev int - 0x1 Card ID product revision.

p_manid int - 0x2 Card ID manufacturer ID.

3 Programmers Reference
3.7 Motherboard virtual component parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-31
Non-Confidential

Table 3-14 Multimedia card parameters (continued)

Parameter Type Allowed values Default value Description

p_OEMid int - 0x0000 Card ID OEM ID.

p_sernum int - 0xCA4D0001 Card serial number.

3.7.4 Terminal parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.terminal_x.parameter=value

x is the terminal identifier 0, 1, 2, or 3.

Table 3-15 Terminal parameters

Parameter Type Allowed values Default value Description

mode string telnet, raw telnet Terminal initialization mode.

start_telnet bool true, false true Enables the terminal when the system starts.

start_port int Valid port number 5000 Port used for the terminal when the system starts. If the specified port
is not free, the port value is incremented by 1 until a free port is
found.

3.7.5 VFS2 parameter

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.vfs2.parameter=value

Table 3-16 VFS2 parameter

Parameter Type Allowed values Default value Description

mount string Valid path - Path to host folder to make accessible inside the model.

3.7.6 Visualization parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

motherboard.vis.parameter=value

Table 3-17 Visualization parameters

Parameter Type Allowed values Default value Description

trap_key int 0x00-0xFF 0x4A, left Alt key Trap key that works with the left Ctrl to toggle the mouse
display.

rate_limit-enable bool true, false true Rate limit simulation.

disable_visualization bool true, false false Disables visualization.

3 Programmers Reference
3.7 Motherboard virtual component parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-32
Non-Confidential

3.8 CoreTile parameters
This section describes the CoreTile parameters.

This section contains the following subsections:
• 3.8.1 Cluster parameters on page 3-33.
• 3.8.2 Core parameters on page 3-33.
• 3.8.3 GIC-400 parameters on page 3-34.
• 3.8.4 Dual cluster system configuration block parameters on page 3-34.
• 3.8.5 CCI-400 parameters on page 3-35.

3.8.1 Cluster parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

coretile.clusterx.parameter=value

x 0 for the Cortex-A15 cluster, 1 for the Cortex-A7 cluster.

Table 3-18 Cluster parameters

Parameter Type Allowed values Default value Description

CFGDISABLE bool true, false false Disables some access to DIC registers.

CLUSTER_ID int 0-15 0 Cluster ID value.

device-accurate-tlb bool true, false false Sets whether device-accurate number of TLBs are
modeled.

dic-spi_count int 0-224, in increments of
32

64 Number of shared peripheral interrupts
implemented.

IMINLN bool true, false true Instruction cache minimum line size for cluster 0,
not cluster 1.

false 32 bytes.

true 64 bytes.

l1_dcache-
state_modelled

bool true, false false Includes Level 1 data cache state model.

l1_icache-
state_modelled

bool true, false false Includes Level 1 instruction cache state model.

l2_cache-size int 512KB, 1MB, 2MB,
4MB

0x80000 Sets Level 2 cache size in bytes integer.

l2_cache-
state_modelled

bool true, false false Includes Level 2 cache state model.

3.8.2 Core parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

coretile.clusterx.cpuy.parameter=value

x 0 for the Cortex-A15 cluster, 1 for the Cortex-A7 cluster.
y the core index, in the range 0-3.

3 Programmers Reference
3.8 CoreTile parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-33
Non-Confidential

Table 3-19 Core parameters

Parameter Type Allowed values Default value Description

CFGEND bool true, false false Initializes to BE8 endianness.

CFGNMFI bool true, false false Enables non-maskable fast interrupts on
startup.

CP15SDISABLE bool true, false false Initializes to disable access to some CP15
registers.

TEINIT bool true, false false Thumb exception enable. The default has
exceptions including reset handled in ARM
state.

VINITHI bool true, false false Initializes with high vectors enabled.

SMPnAMP bool true, false false Sets whether the processor is part of a coherent
domain.

POWERCTLI int 0x0-0x3 0x0 Default power control state for core.

semihosting-enable bool true, false true Enables semi-hosting SVC traps.

semihosting-ARM_SVC int 0x000000-0xFFFFFF 0x123456 ARM SVC number for semi-hosting.

semihosting-Thumb-SVC int 0x00-0xFF 0xAB Thumb SVC number for semi-hosting integer.

semihosting-heap_base int 0x00000000- 0xFFFFFFFF 0x0 Virtual address of heap base.

semihosting-heap_limit int 0x00000000-0xFFFFFFFF 0x0 Virtual address of heap limit integer.

semihosting-stack_base int 0x00000000-0xFFFFFFFF 0x0 Virtual address of stack base.

semihosting-
stack_limit

int 0x00000000-0xFFFFFFFF 0x0 Virtual address of stack limit.

vfp-enable_at_reset bool true, false false Enables coprocessor access and VFP at reset.

vfp-preset bool true, false true Sets whether the model has VFP support.

ase-present bool true, false true Sets whether the model has NEON support.

3.8.3 GIC-400 parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

coretile.v7_vgic.parameter=value

Table 3-20 GIC-400 parameters

Parameter Type Allowed values Default value Description

enabled bool true, false true Enables the component. If disabled, then no register writes
have any effect.

enable_log_warnings bool true, false false Enables warning messages.

enable_log_errors bool true, false false Enables error messages.

enable_log_fatal bool true, false false Enables fatal messages.

3.8.4 Dual cluster system configuration block parameters

You set these instantiation-time parameters when starting the model.

3 Programmers Reference
3.8 CoreTile parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-34
Non-Confidential

The syntax to use in a configuration file or on the command line is:

coretile.dualclustersytemconfigurationblock.parameter=value

Table 3-21 Dual cluster system configuration block parameters

Parameter Type Allowed values Default value Description

CFG_ACTIVECLUSTER int 0x1-0x3, bit mask 0x1 Select the cluster that comes out of
reset at power on:

Bit[0] For the Cortex-A15.

bit[1] For the Cortex-A7.

Cluster0IdOnPOReset int 0x0-0xF 0x0 Cortex-A15 Cluster ID on power-on
reset.

Cluster1IdOnPOReset int 0x0-0xF 0x1 Cortex-A7 Cluster ID on power-on
reset.

DCS_LED bool 0x00-0xFF 0x00 Initial value of the DCS_LED register
that represents the state of the
daughterboard LEDs.

ResetValueOfDaughterUserSwitches int 0x00-0xFF 0x00 The state of the daughterboard user
switches at reset.

INTGEN_INTS int 0-3 3 Number of custom IRQs that the
interrupt generator controls is
(INTGEN_INTS × 32) + 32.

DCS_ID int 0x0-0xFFFFFFFF 0x41120000 The value returned by the DCS_ID
register.

FlipVGICWiringForCluster0AndCluster1 bool true, false false true If this is true, then core 0
of cluster 1 becomes core
interface 0 on the GIC-400.

false If this is false, then core 0
of cluster 0 becomes core
interface 0 on the GIC-400.

3.8.5 CCI-400 parameters

You set these instantiation-time parameters when starting the model.

The syntax to use in a configuration file or on the command line is:

coretile.cci400.parameter=value

Table 3-22 CCI-400 configuration parameters

Parameter Type Allowed values Default
value

Description

broadcastcachemain int 0x0-0x7, bit mask 0x0 For each downstream port, a bit determines whether
broadcast cache maintenance operations are forwarded
down that port.

barrierterminate int 0x0-0x7, bit mask 0x7 For each downstream port, determines whether barriers
are terminated at that port.

3 Programmers Reference
3.8 CoreTile parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-35
Non-Confidential

Table 3-22 CCI-400 configuration parameters (continued)

Parameter Type Allowed values Default
value

Description

bufferableoverride int 0x0-0x7, bit mask For each downstream port, determines whether all
transactions are forced to non-bufferable.

force_on_from_start bool true, false false The CCI-400 normally starts up with snooping
disabled. This parameter enables snooping when the
model starts without it being necessary to program it.
This parameter applies to simulation reset, not at signal
reset.

log_enabled int 0 Logging off.

1 Log only access
violations.

2 Also log writes.

3 Also log reads.

1 Enables log messages from the CCI-400 register file.

3 Programmers Reference
3.8 CoreTile parameters

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-36
Non-Confidential

3.9 Memory map differences between the VE hardware and the system model
The model is based on the memory map of the hardware VE platform. However, it is not intended to be
an accurate representation of a specific VE hardware revision.

The memory map in the supplied model is sufficiently complete and accurate to boot the same operating
system images as for the VE hardware. In the memory map, memory regions that are not explicitly
occupied by a peripheral, or by memory, are unmapped. This includes:
• Regions otherwise occupied by a peripheral that is not implemented.
• Areas that are specified as being reserved.

If a host processor accesses these regions, the model issues a warning.

3 Programmers Reference
3.9 Memory map differences between the VE hardware and the system model

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-37
Non-Confidential

3.10 Memory aliasing differences between the VE hardware and the system model
The model implements address space aliasing of the DRAM. This means that the same physical memory
locations are visible at different addresses.

The lower 2GB of the DRAM is accessible at 0x00_80000000.

The full 4GB of DRAM is accessible at 0x08_00000000, and again at 0x80_00000000.

The aliasing of DRAM then repeats from 0x81_00000000 up to 0xFF_FFFFFFFF.

3 Programmers Reference
3.10 Memory aliasing differences between the VE hardware and the system model

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-38
Non-Confidential

3.11 Features not present in the model
Some features in the hardware version of the Versatile Express motherboard are not implemented in the
system models.

The following features are not implemented in the system models:
• Two-wire serial bus interfaces.
• USB interfaces.
• PCI Express interfaces.
• Compact Flash.
• DVI interfaces.
• Debug and test interfaces.
• Dynamic Memory Controller (DMC).
• Static Memory Controller (SMC).
• CoreSight.

3 Programmers Reference
3.11 Features not present in the model

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-39
Non-Confidential

3.12 Features partially implemented in the model
Partial implementation means that some of the components are present, but their functionality has not
been fully modeled.

If you use these features, they might not work as you expect. Check the model release notes for the latest
information.

Sound

The VE FVPs implement the PL041 AACI PrimeCell and the audio CODEC in the same way as in the
VE hardware, but with a limited number of sample rates.

3 Programmers Reference
3.12 Features partially implemented in the model

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-40
Non-Confidential

3.13 Restrictions on the processor models
Separate documentation contains detailed information regarding the features that are not fully
implemented in the processor models that are included with the VE Fixed Virtual Platforms (FVPs). See
the Fast Models Reference Manual.

The following general restrictions apply to the FVP implementations of ARM processors:
• The simulator does not model cycle timing. In aggregate, all instructions execute in one core master

clock cycle, with the exception of Wait For Interrupt.
• Write buffers are not modeled.
• Most aspects of Translation Lookaside Buffer (TLB) behavior are implemented in the models.

Architecture v7 models use the TLB memory attribute settings when you enable stateful cache.
• No MicroTLB is implemented.
• A single memory access port is implemented. The port combines accesses for:

— Instruction.
— Data.
— DMA.
— Peripherals.

Configuration of the peripheral port memory map register is ignored.
• All memory accesses are atomic and are performed in programmers view order. All transactions on

the PVBus are a maximum of 32 bits wide. Unaligned accesses are always performed as byte
transfers.

• Some instruction sequences are executed atomically, ahead of the component master clock, so that
system time advances during their execution. This can sometimes have an effect in sequential access
of device registers where devices expect time to progress between each access.

• Interrupts are not taken at every instruction boundary.
• The semihosting-debug configuration parameter is ignored.
• Integration and test registers are not implemented.
• Not all CP14 debug registers are implemented.
• You must use an external debugger to debug an FVP.
• The model supports the following breakpoint types:

— Single address unconditional instruction breakpoints.
— Single address unconditional data breakpoints.
— Unconditional instruction address range breakpoints.

• Pseudo-registers in the debugger support processor exception breakpoints. Setting an exception
register to a non-zero value stops execution on entry to the associated exception vector.

• Performance counters are not implemented.

3 Programmers Reference
3.13 Restrictions on the processor models

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-41
Non-Confidential

3.14 Timing considerations
The Fixed Virtual Platforms provide environments that enable you to run software applications in a
functionally-accurate simulation.

However, because of the relative balance of fast simulation speed compared to timing accuracy,
situations exist where the models might behave unexpectedly. When code interacts with real world
devices such as timers and keyboards, data arrives in the modeled device in real world, or wall clock,
time, but simulation time can be running much faster than the wall clock.

This means that a single key-press might be interpreted as several repeated key presses, or a single
mouse click is incorrectly interpreted as a double click. The VE FVPs provide the Rate Limit feature to
match simulation time to wall-clock time. Enabling Rate Limit, either by using the Rate Limit button in
the CLCD display, or the rate_limit-enable model instantiation parameter, forces the model to run at
wall clock time. This avoids issues with two clocks running at significantly different rates. For
interactive applications, ARM recommends enabling Rate Limit.

3 Programmers Reference
3.14 Timing considerations

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-42
Non-Confidential

3.15 Bus consistency messages
Checkers monitor for suspicious interactions between conflicting memory attributes and cache and
Translation Lookaside Buffer (TLB) maintenance operations.

These checkers print messages on stderr. You must launch the model from the command line to observe
these messages.

The FASTSIM_PVCACHE_VERBOSE environment variable controls the checkers and you can set its value as
follows:

0 Does not display cconsistency messages. This is the default behavior if
FASTSIM_PVCACHE_VERBOSE is not set.

1 Only displays severe errors.
2 or higher Displays both severe errors and warnings.

The checkers within the model monitor for the following:
• Multiple entries in the cache with the same security world.

A Secure and a Non-secure line in the cache and at least one of them is dirty.
• Mismatched attributes.

Mixed attributes for a particular physical address, that is UNPREDICTABLE in the architecture.
• Cache Coherent Interconnect snoop or DVM enables.

Misuses of the Cache Coherent Interconnect during snoop or DVM enables or disables.
• Snoop or DVM messages received while in reset.

A snoop or DVM request is sent to a core in reset. This could deadlock the hardware.
• Invalidation of Dirty lines.

A cache is invalidated with dirty lines.

3 Programmers Reference
3.15 Bus consistency messages

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-43
Non-Confidential

3.16 Multiple entries in the cache with the same security world
The models contain AMBA® 4 consistency checkers.

Cause

A secure and a non-secure line both exist, and are dirty, in the same cache at the same time. The system
issues warnings at 1MiB boundaries and only issues them once for each 1MiB section of memory. This
means that it is possible to observe this error from multiple caches.

Reason

This is not necessarily an error if the backing memory for the cache line in the main memory system is
different. However, if they are the same, then you must perform cache maintenance operations with care
to ensure that they observe the updated value.

Example 3-1 Example of multiple entries

<name>-entry3 is for UD-ns-0000e693be7b2400-ish-iHittable-oHittable, and
<name>-entry4 is for ud- s-0000e693be7b2400-ish-iHittable-oHittable,
that is, same address but different security worlds and one or more are dirty.
This isn't necessarily an error if different memory is backing the lines,
but it is a common error.
This is only reported once for each 1024KiB region for each
cache, so you might observe this error from multiple caches.

3 Programmers Reference
3.16 Multiple entries in the cache with the same security world

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-44
Non-Confidential

3.17 Mismatched attributes
The cache models perform the following checks for mismatched attributes:

Cause
1. A 4KiB page is accessed for the first time and the system checks whether any lines from that region

exist in the cache. If they mismatch, the system issues a warning.
2. A cacheable access hits in the cache, but the cache line was fetched with different attributes.
3. A snoop request is received that hits a cache line that has it marked as non-shared.

Reason

It is UNPREDICTABLE in the architecture if shareability or cacheability are mixed. You must follow an
appropriate sequence of cache maintenance and Translation Lookaside Buffer (TLB) operations to
change the attributes.

Example 1
FVP_VE_Cortex_A15x4_Cortex_A7x4.coretile.cluster0.cluster0.l2_cache: Mismatch in attributes
for page including address ns-000000008ff03000
 29 cache lines are allocated with attributes:-
 inner-WB-cacheable outer-WB-cacheable shareability: osh
 but transaction attributes are:-
 inner-WB-cacheable outer-WB-cacheable shareability: ish
 (PNI-u0x0-m0x2-ish-rawaC-rawaC) inner-WB-cacheable Inner cacheable write back (WB)
 outer-WB-cacheable Outer cacheable write back (WB)

PNI-u0x0-m0x2-ish-rawaC-rawaC is interpreted as follows:

P/p Privileged/Non-privileged.
N/S Non-secure/Secure.
I/D Instruction-side access/Data-side access.
u0x0/m0x2 Corresponds to the internal concepts of user flags and AXI IDs of the model.
ish/osh/nsh/sys Inner shareable/Outer shareable/Non-shareable/System.
ra Read-allocate.
wa Write-allocate.
C Cacheable.
NC Non-Cacheable to normal memory.
SO Strongly-Ordered memory.
DV DeVice memory.

Example 2
cluster0.l1icache_2-entry177: Mismatch in transaction from upstream port0 and an existing
entry in the cache:
 Mismatch between cache entry ns-000000008ff05600-osh-iHittable-oHittable
 and transaction ns-000000008ff05600-ish-iHittable-oHittable

ns/s Non-secure/Secure.
000000008ff05600 The physical address.
ish/osh/nsh/sys Inner shareable/Outer shareable/Non-shareable/System.
iHittable The inner cacheability marks it as hittable in this cache.
oHittable The outer cacheability marks it as hittable in this cache.

Example 3
<name>-entry177: Received a snoop request for [<address-range>]
and we hit an existing entry in the cache but it was incompatible with
being the response to a snoop request:
 <mis-match message>

3 Programmers Reference
3.17 Mismatched attributes

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-45
Non-Confidential

We are suppressing the hit in the cache, but a specific implementation
may or may not do the same thing.

3 Programmers Reference
3.17 Mismatched attributes

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-46
Non-Confidential

3.18 Cache Coherent Interconnect snoop and DVM enables
You can program the CCI-400 to control where snoop and DVM messages are transmitted.

Cause

The changes to the snoop control and DVM routing require a finite amount of time to take effect. To
determine when they have taken effect, you must poll a register in the CCI-400.

Reason

Any transactions created in the interim period might or might not observe the change and therefore might
lead to race conditions and UNPREDICTABLE behavior. The checker sets a flag when the snoop or DVM
filters are changed. This flag is only de-asserted after a successful read of a 0, representing snoops in
effect, from the CCI-400 Status Register. While the flag is set, any shared transactions or DVM messages
produce warning messages.

Examples
• FVP_VE_Cortex_A15x4_Cortex_A7x4.coretile.cci400.cciinterconnect: received a transaction

in page ns-000000008ff0d000 It is shared, however, a pending snoop request is in progress
and so there is a race condition as to whether this request will obey the snoop request
or not. The transaction attributes are:-
PND-u0x0-m0x2-ish-rawaC-rawaC upstream port3 ns-000000008ff0d000
You should poll the CCI-400 Status Register until it says that the snoop changes have
taken effect. During this time you should ensure that no shared data is prefetchable
from any of the cores attached to this cluster and that it shouldn't contain shared data
in any of the caches as they might be evicted.

• FVP_VE_Cortex_A15x4_Cortex_A7x4.coretile.cci400.cciinterconnect: received a DVM message:
 <message> However, a snoop change is pending and so there is a race condition as to
whether this message would obey the new snoop value or not.

3 Programmers Reference
3.18 Cache Coherent Interconnect snoop and DVM enables

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-47
Non-Confidential

3.19 Snoop or DVM messages received while in reset
Sometimes, snoop or DVM messages are received while a cluster is in reset.

Cause

The CCI-400 has been instructed to enable snoop or DVM messages to a cluster that is held in reset.

Reason

Sending these messages to the cluster in reset might result in deadlock.

Examples
• <name>: Received a Distributed Virtual Memory (DVM) message whilst cache is held in reset.

This could deadlock the hardware. Message is:-
 <DVM-message>

• *** ERROR: Cache <name> received a snoop request whilst it was in reset!

• <name>: upstream port <N> (numbered from 0) changed its reset signal from <old-level> to
<new-level>
However, a pending change in snoop request is pending. This might deadlock the hardware.

3 Programmers Reference
3.19 Snoop or DVM messages received while in reset

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-48
Non-Confidential

3.20 Invalidation of dirty lines
Sometimes, one or more dirty lines become invalidated from the cache.

Cause

This can only occur if an invalidate instruction is issued, or a core is reset with dirty lines in the cache.

Reason

A particular operation caused one or more dirty lines to become invalidated from the cache. This is likely
to lead to data corruption. Although it is legal for this to occur, because it is sufficiently rare to want to
do such a thing, the model issues a warning when this occurs.

Example
<name>: Reset received whilst dirty lines exist in the cache.
 (Both secure and non-secure worlds)
 UD-ns-0000e6803cf64ae0-ish-iHittable-oHittable
 uD-ns-0000e6823ce64bd0-ish-iHittable-oHittable-prefetched
 uD-ns-0000e6803cf64ae8-ish-iHittable-oHittable
 UD- s-0000e6803ce64ac8-nsh-iHittable-oHittable-prefetched
Total : 4

u/U Not-unique/Unique, in terms of ACE terminology.
d/D Not-dirty/Dirty, in terms of ACE terminology.
prefetched/rmon/wmon Internal flags related to the implementation in the model of exclusive

monitors.

3 Programmers Reference
3.20 Invalidation of dirty lines

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-49
Non-Confidential

3.21 Dual Cluster System Configuration Block
The Dual Cluster System Configuration Block (DCSCB) provides basic functionality for controlling
clocks, resets, and configuration pins in the dual cluster system.

It is not intended to provide the complete trick-box functionality that is found in a typical top-level
simulation test-bench. Instead, its main use is to form the programming interface for the clock, power,
and reset controllers so that software can implement the ARM big.LITTLE™ switching. The following
table shows the DCSCB registers, that this section describes. The DCSCB occupies a 4kB region of
memory in the range 0x10020000-0x10020FFF, and any accesses to undefined areas of this address space
result in an error response. The registers are divided into the following categories:
1. The system control registers are identical across all platform implementations of the dual cluster

system. They control system-level functions such as the resets of individual cores and clusters.
2. The platform control registers provide a common model for controlling and reading platform-level

configuration options for the dual cluster system implementation. Some platform implementations
might support only a subset of these registers. The definitions and address offsets of these registers
are based on the Versatile Express daughter-card configuration controller command codes.

 Note

• All registers are word-sized and only support word-sized transactions.
• Reads from write-only registers or fields return zero.
• Some registers do not implement all 32 bits. See the Width column of the following table.
• Unimplemented bits are RAZ/WI.

The following table shows the DCSCB System Control Registers.

Table 3-23 DCSCB System Control Registers

Name Offset Type Width Reset Description

RST_HOLD0 0x000 RW 9 0x00000000 or
0x000001001

Holds the selected resets in the Cortex-A15 cluster.

RST_HOLD1 0x004 RW 9 0x00000000 or
0x000001001

Holds the selected resets in the Cortex-A7 cluster.

SYS_SWRESET 0x008 WO 24 0x00000000 or
0x000001001

Asserts a software reset of the system.

RST_STAT0 0x00C RO 9 0x00000000 or
0x000001001

Determines the Cortex-A15 processor resets that are
asserted.

RST_STAT1 0x010 RO 9 0x00000000 or
0x000001001

Determines the Cortex-A7 processor resets that are
asserted.

CLUSTER0_CFG_R 0x020 RO 20 - Current configuration of the static configuration input
pins of the Cortex-A15 processor.

CLUSTER0_CFG_W 0x024 RW 20 0x00000000 Configuration of the static configuration input pins of the
Cortex-A15 processor at the next reset.

CLUSTER1_CFG_R 0x028 RO 20 - Current configuration of the static configuration input
pins of the Cortex-A7 processor.

CLUSTER1_CFG_W 0x02C RW 20 0x00010000 Configuration of the static configuration input pins of the
Cortex-A7 processor at the next reset.

DCS_CFG_R 0x030 RO 2 - Reads the power-on configuration of system-level
configuration pins.

The following table shows the DCSCB Platform Control Registers.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-50
Non-Confidential

Table 3-24 DCSCB Platform Control Registers

Name Offset Type Width Reset Description

DCS_LEDS 0x104 RW 8 0x00000000 Controls platform LEDS or other platform-specific indication methods.

DCS_SW 0x108 RO 8 0x00000000 Reads the value of platform switches or other platform-specific configuration
methods.

The following table shows the DCSCB Interrupt Generator Registers.a

Table 3-25 DCSCB Interrupt Generator Registers

Name Offset Type Width Reset Description

INT_CTRL 0x120 RW 2 0x00000000 Controls generation of interrupts from the interrupt generation
trickbox.

INT_FREQ 0x124 RW 10 0x00000000 Controls the frequency of timer-generated interrupts.

INT_TYPE0 0x130 RW 32 0x00000000 Configures the interrupt generator to use level or edge-
triggered interrupts for each interrupt line.

INT_TYPE1 0x134 RW 32 0x00000000 Configures the interrupt generator to use level or edge-
triggered interrupts for each interrupt line. If the interrupt
generator implements fewer than the maximum 128
interrupts, higher order registers corresponding to
unimplemented interrupts are RAZ/WI.

INT_TYPE2 0x138 RW 32 0x00000000

INT_TYPE3 0x13C RW 32 0x00000000

INT_GENERATE 0x140 WO 1 - Generates the next interrupt.

INT_NUMBER 0x144 RO 8 0x00000000 Number of the next interrupt.

INT_ACK 0x148 WO 1 - Acknowledges all the generated interrupts.

INT_SEQ0 –
INT_SEQ127

0x200-0x3FC RW 7 0x00000000 Sequence number for all generated interrupts.

The following table shows the DCSCB ID Registers.

Table 3-26 DCSCB ID Registers

Name Offset Type Width Reset Description

DCS_AID 0xFF8 RO 32 - Dual Cluster System auxiliary platform ID register.

DCS_ID 0xFFC RO 32 - Dual Cluster System platform ID register.

The following table shows the DCSCB Debug Control Registers.

Table 3-27 DCSCB Debug Control Registers

Name Offset Type Width Reset Description

DBG_RST_CTRL 0x520 RW 32 0x00000000 Debugger reset control register that defines the resets to assert. This
register is intended for debug access only. Although software running on
the system can currently access it, this might change in the future.

DBG_RST_SCHED 0x018 RW 9 0x00000100 Debugger reset schedule register to control when to assert resets. This
register is intended for debug access only. Although software running on
the system can currently access it, this might change in the future.

This section contains the following subsections:
• 3.21.1 Reset hold registers, RST_HOLD0 and RST_HOLD1 on page 3-52.

a Interrupt generator registers are RAZ/WI if the interrupt generator is not present.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-51
Non-Confidential

• 3.21.2 Software Reset Register, SYS_SWRESET on page 3-54.
• 3.21.3 Reset Status Registers, RST_STAT0 and RST_STAT1 on page 3-57.
• 3.21.4 Cortex-A15 static configuration read and write Registers on page 3-57.
• 3.21.5 Cortex-A7 static configuration read and write Registers on page 3-58.
• 3.21.6 System Static Configuration Read Register, DCS_CFG_R on page 3-59.
• 3.21.7 LED Control Register, DCS_LED on page 3-60.
• 3.21.8 Switch Status Register, DCS_SW on page 3-60.
• 3.21.9 Dual Cluster System Auxiliary Platform ID Register, DCS_AID on page 3-60.
• 3.21.10 Dual Cluster System Platform ID Register, DCS_ID on page 3-61.
• 3.21.11 Interrupt Generator Control Register, INT_CTRL on page 3-62.
• 3.21.12 Interrupt Generator Interrupt Frequency Register, INT_FREQ on page 3-62.
• 3.21.13 Interrupt Generator Interrupt Type Registers, INT_TYPEx on page 3-63.
• 3.21.14 Interrupt Generator Generate Register, INT_GENERATE on page 3-63.
• 3.21.15 Interrupt Generator Interrupt Number Register, INT_NUMBER on page 3-64.
• 3.21.16 Interrupt Generator Sequencing Registers, INT_SEQx on page 3-64.
• 3.21.17 Interrupt Generator Acknowledge Register, INT_ACK on page 3-64.
• 3.21.18 Debug Reset Control and Reset Schedule Registers on page 3-65.

3.21.1 Reset hold registers, RST_HOLD0 and RST_HOLD1

The reset hold registers enable a processor to place any core or cluster into a reset state.

The reset is scheduled for when the core to be reset enters the STANDBYWFI state, and remains in reset
until another core brings it out of reset.

The following reset hold registers exist:

RST_HOLD0 Toggles resets for the Cortex-A15 cluster.
RST_HOLD1 Toggles resets for the Cortex-A7 cluster.

The following table shows the bits in the RST_HOLDx registers that force a particular reset.

For all supported resets, the reset is held for as long as the corresponding bit in the RST_HOLDx register
is HIGH.

Table 3-28 RST_HOLDx register bit assignments

Bits Name Type Description

[8] CLUSTER_RESET RW Write 1 to this bit to reset the entire cluster. The reset is scheduled to occur when every core in the
cluster has entered the STANDBYWFI state. The cluster is then held in reset until 0 is written to
the field. A cluster reset places each core into a power-on reset and resets the interrupt controller
and L2 logic.

[7:4] CPU_PORESET RW Write 1 to bit n to assert a core power-on reset for core n. The reset is scheduled to occur when core
n enters the STANDBYWFI state. The reset line is then held indefinitely until 0 is written to the
field. A core power-on reset resets the core logic, NEON/VFP and debug logic.

[3:0] CPU_RESET RW Write 1 to bit n to assert a core reset for core n. The reset is scheduled to occur when core n enters
the STANDBYWFI state. The reset line is then held indefinitely until 0 is written to the field. A
core reset resets the core logic and NEON/VFP.

Power-on behavior

At power-on, the CLUSTER_RESET fields of the RST_HOLDx registers take their values from the
CFG_ACTIVECLUSTER static configuration input.

This means that you can choose the cluster, or clusters, that are active at power-on without re-generating
the system. 3.22 Reset architecture on page 3-67 describes the CFG_ACTIVECLUSTER static
configuration input.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-52
Non-Confidential

Writing to RST_HOLDx

Writes to RST_HOLDx might not result in the reset being asserted or de-asserted immediately.

Certain conditions must be met before the requested action can be performed, and the reset controller
completes the action as soon as possible. The following figure shows the simplest sequence of events
when a bit of RST_HOLDx is written from 0 to 1.

RST_HOLDx[n]

STANDBYWFI

RESETn

1 2 3 4 5

Wait for
STANDBYWFI Hold reset Release reset

Minimum 16 cycles

STANDBYWFI

Figure 3-1 RST_HOLDx sequence

In the figure above, the following actions occur:

1. Bit n of RST_HOLDx is written to request the assertion of the reset. The reset controller waits for
the STANDBYWFI signal from core n to go HIGH.

2. STANDBYWFI from core n goes HIGH. The reset controller can now assert the reset.
3. The reset is held for as long as RST_HOLDx[n] is HIGH.
4. When RST_HOLDx[n] is de-asserted, the reset is released.
5. Core n is out of reset.
The figure above shows the simple case where the requested reset does not depend on other resets.

 Note

• A cluster reset is not asserted until STANDBYWFI has been asserted for every core in the cluster.
• Writing a bit of RST_HOLDx from 1 to 0 only releases the reset when all higher-level resets have

been released. For example, higher-level resets always have priority over lower-level resets.
• Writing a bit of RST_HOLDx from 0 to 1 implicitly resets lower-level resets. For example, writing 1

to only PORESET for core 1 resets both PORESET and CPURESET for core 1.

It is possible to withdraw a requested reset before it has been asserted if the bit of RST_HOLDx is
written from 1 to 0 during the 'wait for STANDBYWFI' window. This is the time between points 1 and 2
in the figure above. If the RST_HOLDx request is cleared during this window, then the reset is not
asserted, provided that there are no higher-level resets that take priority. When a reset has been asserted,
the reset controller ensures that the reset is applied for a minimum of 16 clock cycles.

If the RST_HOLDx request is cleared when the reset has been asserted for fewer than 16 clock cycles,
that is, the number of clock cycles between points 3 and 4 in the figure above, is fewer than 16, then the
reset is released only when 16 clock cycles have passed.

During this time, writing 1 back to RST_HOLDx cancels the de-assertion of the reset.

Writing 1 to a bit of RST_HOLDx that is already 1, or that is reset implicitly because of a higher-level
reset, has no effect on the active resets.

Writing 0 to a bit of RST_HOLDx that is already 0 has no effect.

Reading from RST_HOLDx

Reading the RST_HOLDx register returns the value that was last written to the register.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-53
Non-Confidential

To determine the resets that are currently active, see 3.21.3 Reset Status Registers, RST_STAT0 and
RST_STAT1 on page 3-57.

Software sequence to assert reset using RST_HOLDx

For core A to reset Core B, software must perform the following actions:

 Note

Core A and core B can be the same core.

1. Core A writes to the appropriate RST_HOLDx register to request the reset of core B or its cluster.
2. Core B programs the GIC of its cluster to prevent IRQs and FIQs being asserted to Core B.
3. Core B executes a WFI. After Core B executes WFI, its STANDBYWFI output goes HIGH. At this

point, the reset controller asserts reset until the register that caused it is cleared, and always for a
minimum of 16 clock cycles.

Implicit resets based on requested reset levels

Requesting a cluster reset implies that all core in the cluster are to have PORESETn applied.

Applying PORESETn to a core implies that the core reset is applied. See 3.22 Reset architecture
on page 3-67. Writing 1 to a field of RST_HOLDx therefore implicitly forms a reset-assertion request
for lower-level fields, as the following table shows. In the table, the symbols w, x, y, and z each represent
a logic 1 or 0. A dash represents a don't care value, and a pipe, |, represents a logical OR function. The
table also references the RST_STATx registers, that discover the current set of applied resets. See
3.21.3 Reset Status Registers, RST_STAT0 and RST_STAT1 on page 3-57.

Table 3-29 Effect of RST_HOLDx write values

Value written to RST_HOLDx Value read from RST_STATx
when serviced

Description

[8] [7:4] [3:0] [8] [7:4] [3:0] -

0 0000 0000 0 0000 0000 All resets are de-asserted.

0 0000 wxyz 0 0000 wxyz Core resets are asserted for the requested cores, and all
other reset lines are de-asserted.

0 wxyz abcd 0 wxyz abcd | wxyz Power-on resets for the requested cores are asserted,
together with core reset for the same cores, regardless of
the value written in bits [3:0]. Core resets for other
explicitly-requested cores are also asserted. All other
resets are de-asserted.

1 ---- ---- 1 1111 1111 A cluster reset is asserted, and this means that the core
reset and PORESET lines are also asserted.

3.21.2 Software Reset Register, SYS_SWRESET

Use the Software Reset Register to reset the system from a given level.

See 3.22 Reset architecture on page 3-67 for information about reset levels in the system. The resets
are applied, then automatically released. The following table shows the bit assignments for the software
reset register.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-54
Non-Confidential

Table 3-30 SYS_SWRESET Register bit assignments

Bits Name Type Description

[23:20] CORES1 WO Defines the cores in the Cortex-A7 cluster to reset when LEVEL is set to 1 and
CLUSTER_LEVEL0 is set to 0b00 or 0b01. One bit exists for each core. A core is reset if the
corresponding bit is 1.

 Note

If fewer than four cores are implemented in a cluster, then the higher order bits are ignored.

[19:16] CORES0 WO Defines the cores in the Cortex-A15 cluster to reset when LEVEL is set to 1 and
CLUSTER_LEVEL0 is set to 0b00 or 0b01. One bit exists for each core. A core is reset if the
corresponding bit is 1.

 Note

If fewer than four cores are implemented in a cluster, then the higher order bits are ignored.

[15:12] - - -

[11:10] CLUSTER_LEVEL1 WO For a Cortex-A7 cluster reset, defines the reset level:

0b00 Individual core reset.

0b01 Individual core power-on-reset.

0b10 Full cluster reset.

0b11 Reserved.

[9:8] CLUSTER_LEVEL0 WO For a Cortex-A15 cluster reset, defines the reset level:

0b00 Individual core reset.

0b01 Individual core power-on-reset.

0b10 Full cluster reset.

0b11 Reserved.

[7:6] - - -

[5:4] CLUSTERS WO Enables reset for each cluster when LEVEL is set to a cluster reset:

Bit[4] Set to 1 to reset the Cortex-A15 cluster.

Bit[5] Set to 1 to reset the Cortex-A7 cluster.

[3] - - -

[2] SWRESET WO Write 1 to apply the software reset.

[1] - - This bit is reserved for future reset levels.

[0] LEVEL WO Choose what to reset:

0 System reset. Resets the system and both clusters.

1 Core or cluster reset. Resets the clusters and cores specified in the CLUSTERS field.

Writing to SYS_SWRESET forms a request to the reset controller that is serviced as soon as possible.

Writing to SYS_SWRESET while an operation is already in progress modifies that operation as far as
possible. Any resets that have not been asserted are no longer asserted, but resets that have been asserted
already remain active for at least 16 clock cycles.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-55
Non-Confidential

Writing to SYS_SWRESET

When a reset is requested using SYS_SWRESET:

• A core reset is only asserted when that core has entered the STANDBYWFI state.
• A cluster reset is only asserted when all cores in the cluster have entered a STANDBYWFI state.
• If a reset request applies to more than one core, the resets of the core might be applied at different

times depending on when they each enter the STANDBYWFI state.
• The resets are all released simultaneously.
• Resets are asserted for a minimum of 16 clock cycles.
• A complete system reset does not wait for any STANDBYWFI signals to be asserted.

Software sequence to assert reset using SYS_SWRESET

For core A to reset Core B, software must perform the following actions:

 Note

Core A and core B can be the same core.

1. Core A writes to the appropriate SYS_SWRESET fields to request the reset of core B or its cluster.
2. Core B programs the GIC of its cluster to prevent IRQs and FIQs being asserted to Core B.
3. Core B executes a WFI. After Core B executes WFI, its STANDBYWFI output goes HIGH. At this

point, the reset controller asserts reset for a minimum of 16 cycles and then de-asserts it.

Interaction with RST_HOLDx

The SYS_SWRESET and RST_HOLDx registers operate independently.

Resetting a core or cluster using SYS_SWRESET does not cause any resets that are held using
RST_HOLDx to be released. However, using SYS_SWRESET to assert a complete system reset resets
all DCSCB registers to their default values, including RST_HOLDx. This means that clusters that are
held in reset might be released, depending on the value of the CFG_ACTIVECLUSTER input.

The following table shows the components that are reset depending on the values written to the
SYS_SWRESET register. In the table, the symbols w, x, y, and z each represent a logic 1 or 0. A dash
represents a don't care value.

Table 3-31 Components reset depending on values written to SYS_SWRESET register

LEVEL 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CLUSTERS - 00 01 01 01 10 10 10 11 11 11 11 11 11 11 11 11

CLUSTER_LEVEL0 - - 00 01 10 - - - 00 01 10 00 01 10 00 01 10

CLUSTER_LEVEL1 - - - - - 00 01 01 00 00 00 01 01 01 10 10 10

CORES0 - - abcd abcd abcd - - - abcd abcd - abcd abcd - abcd abcd -

CORES1 - - - - - wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz wxyz - - -

Cortex-A15 core 0 reset - - d d d - - - d d - d d - d d -

Cortex-A15 core 1 reset - - c c c - - - c c - c c - c c -

Cortex-A15 core 2 reset - - b b b - - - b b - b b - b b -

Cortex-A15 core 3 reset - - a a a - - - a a - a a - a a -

Cortex-A15 core 0
PORESET

- - - d d - - - - d - - d - - d -

Cortex-A15 core 1
PORESET

- - - c c - - - - c - - c - - c -

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-56
Non-Confidential

Table 3-31 Components reset depending on values written to SYS_SWRESET register (continued)

LEVEL 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Cortex-A15 core 2
PORESET

- - - b b - - - - b - - b - - b -

Cortex-A15 core 3
PORESET

- - - a a - - - - a - - a - - a -

Cortex-A15 cluster reset - - - - - - - - - - - - - - - -

Cortex-A7 core 0 reset - - - - - z z z z z z z z z - - -

Cortex-A7 core 1 reset - - - - - y y y y y y y y y - - -

Cortex-A7 core 2 reset - - - - - x x x x x x x x x - - -

Cortex-A7 core 3 reset - - - - - w w w w w w w w w - - -

Cortex-A7 core 0
PORESET

- - - - - - z z - - - z z z - - -

Cortex-A7 core 1
PORESET

- - - - - - y y - - - y y y - - -

Cortex-A7 core 2
PORESET

- - - - - - x x - - - x x x - - -

Cortex-A7 core 3
PORESET

- - - - - - w w - - - w w w - - -

Cortex-A7 cluster reset - - - - - - - - - - - - - - - - -

System - - - - - - - - - - - - - - - - -

3.21.3 Reset Status Registers, RST_STAT0 and RST_STAT1

The read-only Reset Status Registers are RST_STAT0 and RST_STAT1.

RST_STAT0 Returns the reset status of the Cortex-A15 cluster.
RST_STAT1 Returns the reset status of the Cortex-A7 cluster.

Each read-only RST_STATx register can determine the resets that the reset controller is currently
asserting.

Table 3-32 RST_STATx Register bit assignments

Bits Name Type Description

[8] CLUSTER_RESET RO Reads as 1 if the cluster is held in a cluster reset. Otherwise, it reads as 0.

[7:4] CPU_PORESET RO Each bit n reads as 1 if core n is held in core power-on reset. Otherwise, it reads as 0.

[3:0] CPU_RESET RO Each bit n reads as 1 if core n is held in core reset. Otherwise, it reads as 0.

 Note

It is not possible to read whether a system reset or a power-on reset is active because both core clusters
are fully reset in both of these cases.

3.21.4 Cortex-A15 static configuration read and write Registers

The Cortex-A15 static configuration read and write registers provide a method to observe and change the
values driven onto the static configuration input pins of the Cortex-A15 processor.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-57
Non-Confidential

The static configuration inputs must only be changed when the processor is under reset. Therefore, the
following registers control and observe the values:

• The read-only static configuration read register shows the values currently driven onto the static input
pins.

• The read and write static configuration write register contains the value that is to be driven onto the
static configuration inputs when the processor is next reset.

When the processor is reset, the contents of the CLUSTER0_CFG_W register are copied to the
CLUSTER0_CFG_R register, and this drives the static configuration input pins. The following table
shows the bit assignments for the registers. Both registers contain the same bit fields. Only the access
type is different.

Table 3-33 CLUSTER0_CFG_R and CLUSTER0_CFG_W Register bit assignments

Bits Name CLUSTER0_CONFIG_R
Access

CLUSTER0_CONFIG_W
Access

Description

[19:16] CLUSTER0_CLUSTERID RO RW The value driven onto the
CLUSTERID static input pins.

[15:13] - RAZ RAZ/WI Reserved.

[12] CLUSTER0_IMINLN RO RW The value of the IMINLN static
input pin.

[11:8] CLUSTER0_CFGTE RO RW The value driven onto the
CFGTE static input pins. One
bit exists for each core in the
cluster.

[7:4] CLUSTER0_VINITHI RO RW The value driven onto the
VINITHI static input pins. One
bit exists for each core in the
cluster.

[3:0] CLUSTER0_CFGEND RO RW The value driven onto the
CFGEND static input pins. One
bit exists for each core in the
cluster.

The default values of the Cortex-A15 static configuration registers:
• Set the exception endianness to little-endian for every core.
• Disable high exception vectors for every core, that is, exception vectors start at address 0x00000000.
• Disable Thumb exceptions for every core, that is, exceptions are entered in ARM state.
• Do not prevent write access to secure CP15 registers.
• Set the cluster ID to 0x0.

3.21.5 Cortex-A7 static configuration read and write Registers

The Cortex-A7 static configuration read and write registers determine and control the values driven onto
the static configuration input pins of Cortex-A7.

The behavior of these registers is the same as the Cortex-A15 static configuration read and write
registers. See 3.21.3 Reset Status Registers, RST_STAT0 and RST_STAT1 on page 3-57 for information.

The following table shows the bit assignments for both registers.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-58
Non-Confidential

Table 3-34 CLUSTER1_CFG_R and CLUSTER1_CFG_W Register bit assignments

Bits Name CLUSTER1_CONFIG_R
Access

CLUSTER1_CONFIG_W
Access

Description

[19:16] CLUSTER1_CLUSTERID RO RW The value driven onto the
CLUSTERID static input pins.

[15:12] - RAZ RAZ/WI Reserved.

[11:8] CLUSTER1_TEINIT RO RW The value driven onto the
TEINIT static input pins. One
bit exists for each core in the
cluster.

[7:4] CLUSTER1_VINITHI RO RW The value driven onto the
VINITHI static input pins. One
bit exists for each core in the
cluster.

[3:0] CLUSTER1_CFGEND RO RW The value driven onto the
CFGEND static input pins. One
bit exists for each core in the
cluster.

The default values of the Cortex-A7 static configuration registers:
• Set the exception endianness to little-endian for every core.
• Disable high exception vectors for every core, that is, exception vectors start at address 0x00000000.
• Disable Thumb exceptions for every core, that is, exceptions are entered in ARM state.
• Do not prevent write access to secure CP15 registers.
• Set the cluster ID to 0x1.

3.21.6 System Static Configuration Read Register, DCS_CFG_R

The DCS_CFG_R register discovers the values that were applied to system static configuration input
pins when the system was powered on, that is, system power-on reset.

The following table shows the bit assignments.

Table 3-35 DCS_CFG_R Register bit assignments

Bits Name Type Description

[31:28] NUM_CPU3 RO Reserved for the NUM_CPU configuration for cluster 3. This system does not contain a
cluster 3 and this field is RAZ.

[27:24] NUM_CPU2 RO Reserved for the NUM_CPU configuration for cluster 2. This system does not contain a
cluster 2 and this field is RAZ.

[23:20] NUM_CPU1 RO Returns the NUM_CPU configuration for Cluster 1, Cortex-A7 cluster:

0x0 Cluster not present.

0x1 One core cluster.

0x2 Two core clusters.

... And so on.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-59
Non-Confidential

Table 3-35 DCS_CFG_R Register bit assignments (continued)

Bits Name Type Description

[19:16] NUM_CPU0 RO Returns the NUM_CPU configuration for Cluster 0, Cortex-A15 cluster:

0x0 Cluster not present.

0x1 One core cluster.

0x2 Two core clusters.

... And so on.

[15:2] - RAZ Reserved.

[1:0] CFG_ACTIVECLUSTER RO Returns the value that was driven on the CFG_ACTIVECLUSTER configuration inputs
at the last system power-on reset.

3.21.7 LED Control Register, DCS_LED

The DCS_LED Register can control up to eight platform LEDs, or other platform notification or status
outputs.

A platform might not necessarily use all eight available bits. All LEDs are general-purpose, so the
common platform specification assigns no specific meaning to any LED. The following table shows the
bit assignments of the DCS_LED register.

Table 3-36 DCS_LED Register bit assignments

Bits Name Type Description

[7:0] LED RW Each bit controls an individual LED or status output. Reads back as the last value written to the register.

3.21.8 Switch Status Register, DCS_SW

This read-only register reads the value of up to eight general-purpose platform switches.

A platform might not necessarily use all eight switches. The following table shows the bit assignment of
the DCS_SW register.

Table 3-37 DCS_SW Register bit assignments

Bits Name Type Description

[7:0] SW RO Each bit reads the value of a general-purpose switch.

3.21.9 Dual Cluster System Auxiliary Platform ID Register, DCS_AID

The read-only DCS_AID register returns information about the platform to the Versatile Express
platform configuration controller.

It also contains other status fields that software or users of the platform can use. The following table
shows the bit assignments.

Table 3-38 DCS_AID Register bit assignments

Bits Name Type Description

[31:24] BUILD RO A serial build number for all DCS releases, starting at zero. The build number uniquely
identifies each platform.

[23:14] - RO Reserved. RAZ.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-60
Non-Confidential

Table 3-38 DCS_AID Register bit assignments (continued)

Bits Name Type Description

[13:12] INTGEN_INTS RO Number of interrupts that the interrupt generation trickbox controls:

0b00 32 interrupts.

0b01 64 interrupts.

0b10 96 interrupts.

0b11 128 interrupts.

[11] INTGEN_PRESENT RO Reads as:

1 If the interrupt generation trickbox is present.

0 Otherwise.

[10] SW_ENABLE RO Reads as:

1 If the platform supports reading switch or configuration inputs from the DCS_SW register.

0 Otherwise.

[9] LED_ENABLE RO Reads as:

1 If the platform supports setting LEDs or status information through the DCS_LED register.

0 Otherwise.

[8] - RO Reserved. RAZ.

[7:0] CFGREGNUM RO Reads as zero to indicate that no additional Versatile Express user-defined configuration
commands exist.

The BUILD field identifies a specific release of a dual cluster system platform implementation. No two
releases of a platform implementation have a same build number, regardless of the version of the system
specification that it implements. Build numbers are only unique within a particular implementation, and
there is no relationship between build numbers of different platform implementations. For example, an
FPGA implementation with a build number of 0x8'h05 is not necessarily based on the same dual cluster
system source version as build number 0x8'h05 of a software model.

3.21.10 Dual Cluster System Platform ID Register, DCS_ID

The read-only DCS_ID register provides version information for the dual cluster system implementation.

The following table shows the bit assignments.

Table 3-39 DCS_ID Register bit assignments

Bits Name Type Description

[31:24] IMPLEMENTER RO Reads as 0x8’h41 to indicate ARM Limited.

[23:20] VARIANT RO Identifies the implementation target. Reads as:

0x4’h0 For Versatile Express.

0x4’h1 For software model.

[19:16] ARCHITECTURE RO Identifies the DCS architecture:

0x4’h0 Reserved.

0x4’h1 Cortex-A15 plus Cortex-A15 system.

0x4’h2 Cortex-A15 plus Cortex-A7 system.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-61
Non-Confidential

Table 3-39 DCS_ID Register bit assignments (continued)

Bits Name Type Description

[15:4] - RO Reserved.

[3:0] REVISION RO RAZ

3.21.11 Interrupt Generator Control Register, INT_CTRL

The INT_CTRL register starts and stops the generation of interrupts from the interrupt generation
trickbox.

See 3.22 Reset architecture on page 3-67 for a complete description of how to set up and use trickbox
interrupts. The following table shows the bit assignments for the INT_CTRL register. If the interrupt
generator is not present, then this register is RAZ/WI.

Table 3-40 INT_CTRL Register bit assignments

Bits Name Type Description

[1] TIMER_EN RW Enables automatic generation of interrupts at regular intervals:

0 Do not generate timer-based interrupts. Interrupts are not generated automatically, but you can still
generate them manually.

1 Generate regular interrupts using the timer, if ENABLE is HIGH.

[0] ENABLE RW Enable interrupts from the interrupt trickbox:

0 The trickbox does not generate interrupts, neither automatically nor explicitly-requested.

1 The trickbox can generate interrupts.

The timer that controls automatic assertion of interrupts runs when all the following are true:
• INT_CTRL.ENABLE is HIGH.
• INT_CTRL.TIMER_EN is HIGH.
• Additional interrupts are available for generation, indicated by INT_NUMER.SATURATED being

LOW.

If any of the above conditions are not met, then the timer does not run and interrupts are not asserted
automatically. When the timer is paused because INT_CTRL.ENABLE is LOW or
INT_CTRL.TIMER_EN is LOW, it resumes from its previous position when the appropriate enable is set
HIGH.

If the timer is halted because no additional interrupts are available for generation, the timer can only start
again when all the interrupts are acknowledged using the INT_ACK register.

3.21.12 Interrupt Generator Interrupt Frequency Register, INT_FREQ

The INT_FREQ register controls the frequency at which the interrupt generator automatically asserts
interrupts, if this functionality is enabled in the INT_CTRL register.

The following table shows the bit assignments for the INT_FREQ register.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-62
Non-Confidential

Table 3-41 INT_FREQ Register bit assignments

Bits Name Type Description

[9:0] FREQUENCY RW Controls the frequency of timer-generated interrupts, when INT_CTRL.TIMER_EN is HIGH. Set this
field to n to generate interrupts every n+1 cycles when the timer is enabled. This means that a value of:

0 Generates an interrupt every clock cycle.

1 Generates an interrupt every second clock cycle.

2 Generates an interrupt every third clock cycle.

... And so on.

Writing any value to the INT_FREQ register causes the internal interrupt timer to be cleared, but it
automatically restarts if it is enabled. The INT_FREQ register can be updated at any time, even if
interrupt generation is currently enabled. If the interrupt generation trickbox is not present, then this
register is RAZ/WI.

3.21.13 Interrupt Generator Interrupt Type Registers, INT_TYPEx

The INT_TYPEx registers configure whether the interrupt generator trickbox generates level-sensitive or
edge-sensitive interrupts for each of the 128 supported interrupts:

INT_TYPE0 Configures interrupts 0-31, one bit for each interrupt.
INT_TYPE1 Configures interrupts 32-63, one bit for each interrupt.
INT_TYPE2 Configures interrupts 64-95, one bit for each interrupt.
INT_TYPE3 Configures interrupts 96-127, one bit for each interrupt.

Each register consists of 32 read and write bit fields, where each bit field configures an interrupt. Bit n of
INT_TYPEx configures interrupt number 32x + n, and can take the following values:

0 Generate a level interrupt for this line. An interrupt on this line pulls the interrupt signal HIGH and
keeps it HIGH until it is acknowledged.

1 Generate pulse, edge-triggered, interrupts on this line. An interrupt on this line causes the interrupt
signal to go HIGH for one clock cycle.

It is recommended to only update this register prior to starting interrupt generation, when
INT_CTRL.ENABLE is LOW and interrupts from any previous generation runs have been
acknowledged. If the interrupt generator is configured to support fewer than 128 interrupts, then the
registers corresponding to unsupported interrupts are RAZ/WI.

3.21.14 Interrupt Generator Generate Register, INT_GENERATE

The INT_GENERATE register causes an interrupt to be generated on request.

The generated interrupt is the next interrupt from the interrupt sequence list. If all possible interrupts
have been generated, then requesting an additional interrupt has no effect. Writing to this register has no
effect if INT_CTRL.ENABLE is LOW.

The following table shows the bit assignments for the INT_GENERATE register.

Table 3-42 INT_GENERATE Register bit assignments

Bits Name Type Description

[0] GENERATE WO Write 1 to this field to generate the next interrupt

This register is RAZ/WI if the interrupt generator is not present.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-63
Non-Confidential

3.21.15 Interrupt Generator Interrupt Number Register, INT_NUMBER

Read the INT_NUMBER register to determine the sequence number of the next interrupt that the
interrupt generator trickbox is to generate.

The following table shows the bit assignments for the INT_NUMBER register.

Table 3-43 INT_NUMBER Register bit assignments

Bits Name Type Description

[7] SATURATED RO Reads as:

0 If additional interrupts can be generated.

1 If all possible interrupts have been generated.

[6:0] NUMBER RO Returns the sequence number for the next interrupt, starting at 0x0. When all possible interrupts have
been generated, every bit in this field is HIGH, regardless of the configured maximum number of
interrupts.

Bits [7:0] of this register can be used together to determine how many interrupts have been generated:

0x8'hFF All possible interrupts have been generated.
Any other value a n interrupts have been generated.

The number of possible interrupts depends on the build configuration of the interrupt generator. If the
interrupt generator is not present, then this register is RAZ/WI.

3.21.16 Interrupt Generator Sequencing Registers, INT_SEQx

The interrupt generator sequencing registers configure the sequence for trickbox-generated interrupts.

You must program these registers with a valid sequence before enabling the interrupt generator. There are
up to 128 INT_SEQx registers, one for each supported interrupt.

If the interrupt generator supports fewer than the maximum 128 interrupts, then registers corresponding
to unavailable interrupts are RAZ/WI.

If the interrupt generator is not present, all registers are RAZ/WI.

Each INT_SEQx register has the bit assignment that the following table shows. INT_SEQx configures
the interrupt line that is asserted when the xth interrupt is requested.

The following table shows the bit assignments for the INT_SEQx register.

Table 3-44 INT_SEQx Register bit assignments

Bits Name Type Description

[6:0] NUMBER RW Configures the interrupt line that is to be asserted for this position in the sequence. If the interrupt generator
is configured to support fewer than 128 interrupts, then the higher-order bits of this field are RAZ/WI. The
width of the field is log2(Number of supported interrupts).

Before generation starts, the NUMBER field of every INT_SEQx register must be unique, otherwise
results are UNPREDICTABLE. Writing to these registers when interrupt generation is enabled, or with
unacknowledged interrupts, gives UNPREDICTABLE behavior. If the interrupt generator is configured to
support fewer than 128 interrupts, then the registers corresponding to the unavailable interrupts are
RAZ/WI.

3.21.17 Interrupt Generator Acknowledge Register, INT_ACK

The INT_ACK register acknowledges all level-sensitive interrupts that have been generated, and resets
the INT_NUMBER register to zero.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-64
Non-Confidential

It also resets the internal timer that is used for automatic interrupt generation. After acknowledging all
interrupts using this register, the interrupt generator can be used again in another generation run.

The following table shows the bit assignments for the INT_ACK register.

Table 3-45 INT_ACK Register bit assignments

Bits Name Type Description

[0] ACK WO Write 1 to acknowledge all interrupts and reset the INT_NUMBER register to zero.

If the interrupt generator is not present, then this register is RAZ/WI.

3.21.18 Debug Reset Control and Reset Schedule Registers

The debug reset control and schedule registers are used together to reset some or all of the system.

The following tables show the bit assignments of the Debug Reset Control and Reset Schedule registers.

Table 3-46 RST_CTRL Register bit assignments

Bits Name Type Description

[31] SYS_DBGRST RW Schedule a debug system reset when 1.

[30] SYS_PORESET RW Schedule a system-wide power-on reset when 1.

[29] - SBZP Reserved.

[28] CLUSTER1_SCURESET RW Schedule Cortex-A7 core resets. These fields exhibit the same behavior as the Cortex-
A15 reset fields.

[27:24] CLUSTER1_DBGRESET RW

[23:20] CLUSTER1_CORERESET RW

[19:18] - SBZP Reserved.

[17] CLUSTER0_L2RESET RW Schedule Cortex-A15 resets. When a field is 1, a reset pulse is scheduled for when the
RST_SCHED timer expires.

 Note

If the Cortex-A15 cluster is configured to contain fewer than four cores, then the high-
order bits of each field corresponding to unimplemented cores are RAZ/WI.

[16] CLUSTER0_PRESET RW

[15:12] CLUSTER0_DBGRESET RW

[11:8] CLUSTER0_CXRESET RW

[7:4] CLUSTER0_CORERESET RW

[3:0] CLUSTER0_CPUPORESET RW

Table 3-47 RST_SCHED Register bit assignments

Bits Name Type Description

[8] DISABLE RW Disables the reset scheduler timer. This bit auto-sets when the TIMER field reaches zero.

[7:0] TIMER RW Reset schedule timer. This field auto-decrements if the DISABLE field is 0. When the timer reaches zero, the
interrupts configured in the RST_CTRL register are pulsed. Writing 0 to this field, and 0 to the DISABLE
field pulses the interrupts immediately.

To use the registers:
• Write 1 to each bit of the RST_CTRL register that corresponds to the reset that is to be pulsed.
• Write a value to the TIMER field of the RST_SCHED register. If the DISABLE bit is written as 0, or

if it is already 0, the timer automatically begins to decrement. When the TIMER reaches zero, any

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-65
Non-Confidential

resets that are scheduled in the RST_CTRL register are asserted, and the DISABLE field resets to 1
to prevent subsequent resets.

• Writing 0 to the TIMER field causes the resets to be pulsed immediately, if the DISABLE field is 0.

If the TIMER field of the RST_SCHED register is written together with a value of 0 in the DISABLE
field in a single transaction, then the reset scheduler activates immediately. Otherwise, the TIMER only
decrements when 0 is written to the DISABLE field later.

3 Programmers Reference
3.21 Dual Cluster System Configuration Block

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-66
Non-Confidential

3.22 Reset architecture
The platform layer defines several levels of reset.

The following levels of reset exist, in increasing order:

Core reset
Core reset, including NEON and VFP.

Core power-on reset
Core, NEON, VFP, and CPU debug.

Cluster reset
Entire core cluster including L2 and interrupt controller.

System reset
Cluster reset for all clusters plus dual cluster system.

Power-on reset
Entire system and platform including the debug subsystem.

Debug resets

The processors contain the following debug-related reset signals:

nDBGRESET[n:0]
Where n is the number of cores in the cluster.

nPRESETDBG
In the Cortex-A7, this reset only exists at the integration layer, that integrates the CoreSight
subsystem. Conversely, the Cortex-A15 processor integrates the CoreSight components at the
Cortex-A15 level and therefore contains the nPRESETDBG signal.

nDBGRESET[n:0] resets the debug logic for each core, including breakpoint and watchpoint logic.
nPRESETDBG resets the CoreSight debug subsystem, including the CTIs, CTMs, and debug APB. A
core power-on reset, cluster reset, and system reset assert the nDBGRESET lines to the appropriate
cores, but only a power-on reset asserts nPRESETDBG. All components in the CoreSight debug
subsystem are in the same nPRESETDBG domain and cannot be reset independently of each other.

Each successive reset level from the list above is a superset of the previous reset level, so a reset level
also resets everything in the levels below it.

For example, a core power-on reset includes everything that is reset by a core reset, and a system reset
includes a cluster reset, core power-on reset, and core reset for each cluster. A memory-mapped register
can explicitly control platform resets, but the reset controller also manages platform resets. The reset
controller is closely coupled with the power controller.

See 3.21.1 Reset hold registers, RST_HOLD0 and RST_HOLD1 on page 3-52 and 3.21.2 Software Reset
Register, SYS_SWRESET on page 3-54 for information about the reset registers.

At power-on, the dual cluster system platform issues a complete power-on reset to reset:
• Core clusters.
• Interconnect.
• Debug.
• Peripherals.

When the power-on reset sequence is complete, a static configuration option determines whether the
Cortex-A7 cluster or the Cortex-A15 cluster, or both, exit reset.

3 Programmers Reference
3.22 Reset architecture

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-67
Non-Confidential

3.23 Interrupt Generation Trickbox
The interrupt generation trickbox is an extension of the Dual Cluster System Configuration Block
(DCSCB) that enables interrupts to be generated either on demand, by writing to a control register, or
automatically at regular intervals, using a programmable timer.

The trickbox controls various interrupt lines and asserts, at most, one interrupt per cycle, in an order that
you can configure. Interrupts can be either:

• Level-sensitive.
• Edge-sensitive.

3.15 Bus consistency messages on page 3-43 describes the DCSCB that contains registers to configure
and control the interrupt generation trickbox. The interrupt generation trickbox can control up to 128
interrupt lines.

When interrupt generation starts:
1. The index in the INT_SEQ0 register provides the first interrupt that the trickbox asserts.
2. The index in the INT_SEQ1 register provides the second interrupt that the trickbox asserts.

It is a prerequsite that you have already programmed the INT_SEQx registers with the required sequence
before you start the interrupt generation.

This section contains the following subsections:
• 3.23.1 Using the Interrupt Generation Trickbox on page 3-68.

3.23.1 Using the Interrupt Generation Trickbox

You can generate interrupts either: on demand, by writing to a control register, or automatically at regular
intervals, using a programmable timer.

To set up and use the interrupt generation trickbox:

Procedure
1. Program the INT_SEQx registers with integers in the range 0-(INTGEN_INTS-1).

These numbers refer to the interrupt line that fires each time the trickbox generates an interrupt. The
value in each INT_SEQx register must be unique.

2. Program the INT_TYPEx registers to configure whether each interrupt is level-triggered or edge-
triggered, as required.

3. If the trickbox must automatically generate interrupts at regular intervals, set INT_FREQ to the
required frequency.
The values are as follows:

0 A value of 0 means that an interrupt is generated on every clock cycle.
1 A value of 1 means that an interrupt is generated every other clock cycle.

The timer does not start until interrupt generation is globally enabled.
4. Set INT_CTRL.ENABLE to 1 to enable the generation of interrupts.

Interrupts start to fire automatically if INT_CTRL.TIMER_EN is 1. Otherwise, manual generation of
interrupts is enabled.

5. Run the code of interest across which the interrupts are to be strobed.
Option Description

Interrupts are to be generated
manually.

Write 1 to INT_GENERATE at the required points in the code
to fire the next interrupt.

Interrupts are to be timer-
generated.

You can pause generation at any time by clearing
INT_CTRL.TIMER_EN.

3 Programmers Reference
3.23 Interrupt Generation Trickbox

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-68
Non-Confidential

Option Description

Additional interrupts can be
generated manually

If INT_CTRL.ENABLE is HIGH.

6. Write 0 to INT_CTRL.ENABLE to stop the generation of subsequent interrupts.
7. Read INT_NUMBER to determine how many interrupts fired.

If this value is 0x8hFF, then all possible interrupts fired, as the INTGEN_INTS option configures. If
the value is not 0x8hFF, then it provides the actual number of interrupts that fired.

8. Write 1 to INT_ACK to clear all level-sensitive interrupts and to reset INT_NUMBER back to zero.
The interrupt generator is now ready to be reconfigured or restarted.

 Note

Writing to INT_GENERATE when INT_CTRL.ENABLE is 0 has no effect. Generation is UNPREDICTABLE

if an interrupt number appears in more than one INT_SEQx register.

3 Programmers Reference
3.23 Interrupt Generation Trickbox

ARM DUI0848G Copyright © 2014-2016 ARM. All rights reserved. 3-69
Non-Confidential

	Fixed Virtual Platforms VE Cortex-A15 Cortex-A7 CCI-400 User Guide
	Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : About system models
	1.2 : About the VE FVP
	1.3 : About the Cortex-A15 Cortex-A7 CCI-400 FVP

	2 : Getting Started with the Cortex-A15 Cortex-A7 CCI-400 FVP
	2.1 : Supported operating systems for the Cortex-A15 Cortex-A7 CCI-400 FVP
	2.2 : Licenses for Cortex-A15 Cortex-A7 CCI-400
	2.3 : Installing the Cortex-A15 Cortex-A7 CCI-400
	2.4 : Running models from the command line
	2.5 : Running models using Model Debugger
	2.6 : Configuring the model

	3 : Programmers Reference
	3.1 : Fixed Virtual Platforms for VE platform functionality
	3.2 : Fixed Virtual Platform VE Cortex-A15 Cortex-A7 CCI-400 memory map and interrupts
	3.3 : CS2 peripheral memory map
	3.4 : CS3 peripheral memory map
	3.5 : Model parameters
	3.6 : Motherboard peripheral parameters
	3.6.1 : Color LCD controller parameters
	3.6.2 : Ethernet parameters
	3.6.3 : MAC address parameter
	3.6.4 : System controller parameters
	3.6.5 : VE System Register block parameters
	3.6.6 : UART parameters
	3.6.7 : Watchdog parameter

	3.7 : Motherboard virtual component parameters
	3.7.1 : FLASH loader parameters
	3.7.2 : Host bridge parameter
	3.7.3 : Multimedia card parameters
	3.7.4 : Terminal parameters
	3.7.5 : VFS2 parameter
	3.7.6 : Visualization parameters

	3.8 : CoreTile parameters
	3.8.1 : Cluster parameters
	3.8.2 : Core parameters
	3.8.3 : GIC-400 parameters
	3.8.4 : Dual cluster system configuration block parameters
	3.8.5 : CCI-400 parameters

	3.9 : Memory map differences between the VE hardware and the system model
	3.10 : Memory aliasing differences between the VE hardware and the system model
	3.11 : Features not present in the model
	3.12 : Features partially implemented in the model
	3.13 : Restrictions on the processor models
	3.14 : Timing considerations
	3.15 : Bus consistency messages
	3.16 : Multiple entries in the cache with the same security world
	3.17 : Mismatched attributes
	3.18 : Cache Coherent Interconnect snoop and DVM enables
	3.19 : Snoop or DVM messages received while in reset
	3.20 : Invalidation of dirty lines
	3.21 : Dual Cluster System Configuration Block
	3.21.1 : Reset hold registers, RST_HOLD0 and RST_HOLD1
	Power-on behavior
	Writing to RST_HOLDx
	Reading from RST_HOLDx
	Software sequence to assert reset using RST_HOLDx
	Implicit resets based on requested reset levels

	3.21.2 : Software Reset Register, SYS_SWRESET
	Writing to SYS_SWRESET
	Software sequence to assert reset using SYS_SWRESET
	Interaction with RST_HOLDx

	3.21.3 : Reset Status Registers, RST_STAT0 and RST_STAT1
	3.21.4 : Cortex-A15 static configuration read and write Registers
	3.21.5 : Cortex-A7 static configuration read and write Registers
	3.21.6 : System Static Configuration Read Register, DCS_CFG_R
	3.21.7 : LED Control Register, DCS_LED
	3.21.8 : Switch Status Register, DCS_SW
	3.21.9 : Dual Cluster System Auxiliary Platform ID Register, DCS_AID
	3.21.10 : Dual Cluster System Platform ID Register, DCS_ID
	3.21.11 : Interrupt Generator Control Register, INT_CTRL
	3.21.12 : Interrupt Generator Interrupt Frequency Register, INT_FREQ
	3.21.13 : Interrupt Generator Interrupt Type Registers, INT_TYPEx
	3.21.14 : Interrupt Generator Generate Register, INT_GENERATE
	3.21.15 : Interrupt Generator Interrupt Number Register, INT_NUMBER
	3.21.16 : Interrupt Generator Sequencing Registers, INT_SEQx
	3.21.17 : Interrupt Generator Acknowledge Register, INT_ACK
	3.21.18 : Debug Reset Control and Reset Schedule Registers

	3.22 : Reset architecture
	3.23 : Interrupt Generation Trickbox
	3.23.1 : Using the Interrupt Generation Trickbox

